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Abstract

Deep neural network (DNN) models are increasingly popular
in edge video analytic applications. However, the compute-
intensive nature of DNN models pose challenges for energy-
efficient inference on resource-constrained edge devices.
Most existing solutions focus on optimizing DNN infer-
ence latency and accuracy, often overlooking energy effi-
ciency. They also fail to account for the varying complex-
ity of video frames, leading to sub-optimal performance in
edge video analytics. In this paper, we propose an Energy-
Efficient Early-Exit (E4) framework that enhances DNN in-
ference efficiency for edge video analytics by integrating a
novel early-exit mechanism with dynamic voltage and fre-
quency scaling (DVFS) governors. It employs an attention-
based cascade module to analyze video frame diversity and
automatically determine optimal DNN exit points. Addition-
ally, E4 features a just-in-time (JIT) profiler that uses coor-
dinate descent search to co-optimize CPU and GPU clock
frequencies for each layer before the DNN exit points. Ex-
tensive evaluations demonstrate that E4 outperforms current
state-of-the-art methods, achieving up to 2.8× speedup and
26% average energy saving while maintaining high accuracy.

Introduction
Advances in deep neural network (DNN) models and GPU
hardware accelerators have significantly advanced video an-
alytics in edge intelligence applications, including object de-
tection (Zou et al. 2023; Zhao et al. 2019), action recogni-
tion (Ghodrati, Bejnordi, and Habibian 2021; Jhuang et al.
2013), and pose estimation (Andriluka et al. 2014; Toshev
and Szegedy 2014; Andriluka et al. 2018), etc. To pro-
tect data privacy and ensure low-latency quality of service
(QoS), many of these applications are deployed on edge de-
vices close to the data sources (Liang et al. 2023). However,
the increasing demand for higher video quality results in
greater video frame complexity, making DNN models com-
putationally intensive for tasks like multi-object detection
and tracking. On the hardware side, edge devices face lim-
itations in cost and size, resulting in fewer computational
resources compared to cloud servers (Bhardwaj et al. 2022;
Padmanabhan et al. 2023; Khani et al. 2023). The diverse
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Figure 1: The impact of CPU and GPU clock frequencies on
(a) inference latency (ms) and (b) energy consumption (W),
based on running EfficientNet-B0 on an Nvidia Xavier NX
edge GPU with 8GB DRAM.

network structures of DNN models (Cui et al. 2022) and
the varying complexity of video frames (Menon et al. 2022)
(e.g., the spatial correlation between consecutive frames) in-
troduce new challenges for edge video analytics.

Dynamic voltage and frequency scaling (DVFS) is a
widely used power management technique that balances
energy consumption and computing performance on edge
devices by adjusting CPU and GPU voltage-frequency in
real-time. While previous studies have developed various
learning-based DVFS governors (Kim et al. 2021; Yeganeh-
Khaksar et al. 2020; Lin et al. 2023), we find that their per-
formance suffers when applied to edge video analytics due
to a mismatch between CPU/GPU frequency settings and the
specific demands of video processing at the edge.

As a motivating example, we tested zTT (Kim et al.
2021), a state-of-the-art learning-based DVFS governor,
on an Nvidia Jetson Xavier NX edge device running the
EfficientNet-B0 DNN model (Tan and Le 2019). The results,
shown in Fig. 1, highlight the trade-off between inference la-
tency and energy consumption. Specifically, we observe that
higher processor clock frequencies reduce inference latency
but significantly increase energy consumption. For instance,
achieving real-time video analytics at 30 frames per second
(fps), which requires a 30ms inference latency, necessitates
setting the CPU and GPU frequencies to their highest levels
of 1.9GHz and 1.1GHz, respectively. However, this leads to
a sharp rise in energy consumption of 8.6W. Similar trends
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were observed on other edge devices as well.
Based on the experiments and observations, we identified

that the challenges stem from the diversity in video frame
complexity and DNN models. As illustrated in Fig. 2, differ-
ent video frames vary in the number of objects they contain,
leading to varying levels of complexity for object detection.
We use the term video frame complexity to describe these
differing DNN inference demands in general video analyt-
ics applications. State-of-the-art DNN models are designed
to detect multiple objects with high accuracy, but not all
network layers are necessary for frames with fewer objects.
For these low-complexity frames, DVFS should adaptively
reduce CPU and GPU clock frequencies. However, current
learning-based DVFS approaches do not account for video
frame complexity. Additionally, edge video analytics often
deploy different DNN models for various tasks like detec-
tion and tracking, which further complicates performance
optimization. Conventional DVFS methods are application-
agnostic and do not consider the specific workload charac-
teristics of DNNs. In this paper, our proposed framework
addresses both video frame complexity and DNN model di-
versity to optimize edge performance.

In this paper, we introduce the Energy-Efficient Early-
Exit (E4) framework that improves DNN inference effi-
ciency and latency for edge video analytics. Early-Exit is
a mechanism that adaptively exits DNN inference early
based on video frame complexity and DNN model diver-
sity (Teerapittayanon, McDanel, and Kung 2016; Laskaridis
et al. 2020; Zhang, Zhao, and Liu 2023b). We introduce two
key design implementing E4: (1) an attention-based cas-
cade module that determines DNN exit points by analyz-
ing video frame complexity, and (2) a novel DVFS gover-
nor that automatically adjusts CPU and GPU frequencies for
each layer before the DNN exit points using a Just-In-Time
(JIT) profiler (You, Chung, and Chowdhury 2023) based on
coordinate descent search. We conduct comprehensive ex-
periments on two widely-used datasets and two representa-
tive video analytics DNN models across five heterogeneous
edge devices. The evaluation results demonstrate that E4
achieves lower latency and higher energy efficiency com-
pared to state-of-the-art methods, while maintaining accu-
racy. The main contributions of this paper are as follows:

• We propose E4, an energy-efficient inference framework
that enables adaptive DNN exit points and power man-
agement configurations tailored to dynamic video frames
and DNN models.

• We design an attention-based cascade module that deter-
mines optimal exit points by analyzing the spatial corre-
lation between consecutive video frames.

• We develop a novel power management approach using
the coordinate descent search algorithm to automatically
scale CPU and GPU frequencies for each network layer.
Additionally, a lightweight DNN-based prediction model
minimizes performance interference between multiple
DNN models.

• Extensive experimental results demonstrate that E4 out-
performs state-of-the-art early-exit methods, achieving
up to 2.8× speedup and 26% average energy savings.

Related Works
Power management on edge devices: Previous works have
introduced various DVFS governors for power manage-
ment on edge devices. For instance, zTT (Kim et al. 2021),
GearDVFS (Lin et al. 2023) and Ring-DVFS (Yeganeh-
Khaksar et al. 2020) use learning-based approaches to au-
tomatically optimize CPU and GPU frequencies to reduce
energy consumption, often at the cost of inference perfor-
mance. In contrast, methods like Road-RuNNer (Kakolyris
et al. 2023), DVFO (Zhang et al. 2024; Zhang, Zhao, and Liu
2023a) and AppealNet (Li et al. 2021) use adaptive parti-
tioning to enable cloud-edge collaborative inference, reduc-
ing energy consumption by running parts of DNN models
on edge devices. Zeus (You, Chung, and Chowdhury 2023)
focuses on optimizing energy during DNN training with a
multi-arm bandit-based power optimizer that balances en-
ergy consumption and latency. Additionally, techniques like
model compression (Han, Mao, and Dally 2015) and neu-
ral architecture search (NAS) (Ren et al. 2021) are comple-
mentary to E4 and can further enhance energy efficiency by
using lightweight DNN models.

Early-Exit DNN inference: The early-exit mecha-
nism (Teerapittayanon, McDanel, and Kung 2016) is a
type of dynamic inference that allows DNNs to exit at
different layers or sub-networks, once an accuracy threshold
is met, thus reducing computation costs while maintaining
accuracy. Since its introduction in BranchNet (Teerapit-
tayanon, McDanel, and Kung 2016), various early-exit
strategies have been developed. For instance, HarvNet (Jeon
et al. 2023) uses NAS to automatically determine exit
points, Delen (Liang et al. 2023) employs conditional
execution for adaptive control of latency, accuracy, and
power. PAME (Zhang et al. 2022) focuses on reducing batch
inference latency with precision-aware early exits. However,
these approaches do not integrate power management tech-
niques like DVFS for energy-efficient dynamic inference.
While methods such as EdgeBERT (Tambe et al. 2021),
EENet (Li et al. 2023b) and Predictive Exit (Li et al. 2023a)
combine early exits with DVFS, they overlook the impact of
video frame complexity on DNN inference. In contrast, our
work analyzes video frame complexity to optimize energy
consumption and inference latency, while maintaining DNN
inference accuracy in edge video analytics.

Edge video analytics: DNN-based video analysis on edge
devices near the data source is a promising approach.
Previous works have focused on optimizing inference
latency, accuracy, and memory overhead. For example,
Ekya (Bhardwaj et al. 2022), RECL (Khani et al. 2023)
and AdaInf (Shubha and Shen 2023) use continuous learn-
ing (Wang et al. 2024) for incremental training on edge de-
vices, which addresses accuracy degradation from data drift.
Gemel (Padmanabhan et al. 2023) reduces memory over-
head through model merging. Remix (Jiang et al. 2021) par-
titions video frames by the number of objects, using com-
plex DNN models for regions with more objects and simpler
models for regions with fewer objects to reduce inference
latency. These approaches are complementary to E4, which
further enhances inference performance.
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Figure 2: Overview of the proposed E4 efficient edge DNN video analytic inference framework. Given a video input, we sample
T frames with varying complexities, such as different numbers of detectable objects. The feature extractor processes each frame
and aggregates these features to assess video frame complexity. An attention module and its corresponding gate are trained to
determine DNN early exit points. The Just-In-Time (JIT) Profiler and DVFS Governor are then employed to search and scale
CPU and GPU clock frequencies for each layer before the DNN exit points.

Methodology
Design Overview
Our proposed E4 framework addresses energy-efficient
DNN inference for edge video analytics. The core idea of
E4 is to determine optimal exit points for different video
frames based on their complexity. A learning-based DVFS
governor then co-optimizes CPU and GPU clock frequen-
cies for each network layer before these exit points during
the DNN inference. As illustrated in Fig. 2, E4 consists of
four key components: (1) Accumulated Feature Pooling an-
alyzes video frame complexity. (2) Attention-Based Early-
Exit determines the appropriate DNN exit points. (3) Just-
In-Time (JIT) Profiler dynamically co-optimizes CPU and
GPU frequencies for each layer before the exit points. (4)
DVFS governor manages dynamic voltage and frequency
scaling. The framework uses historical video frame data to
train the early-exit DNN model, leveraging the temporal cor-
relation between frames. Each classifier performs inference
at the layer corresponding to each early exit point. This dy-
namic power management approach makes informed deci-
sions based on the complexity of video frames and DNN
models. Details of each component are discussed in the fol-
lowing sections.

Accumulated Feature Pooling
Given a set of video frames and their corresponding labels,
e.g., objects to be detected, the feature extractor generates
features for each frame. In our experiments, we use the
EfficientNet-B0 (Tan and Le 2019) and MobileNet-v2 (San-
dler et al. 2018) as the feature extraction backbones. We
aggregate these features using Accumulated Feature Pool-
ing, which is based on max-pooling (Ghodrati, Bejnordi,
and Habibian 2021). This method captures temporal rela-
tionships between T consecutive video frames. Let Φ de-
note the feature extraction network parameterized by hyper-
parameters θ. We implement the temporal aggregation func-
tion Ψ using a two-layer long short-term memory (LSTM).
For a video frame xt and its extracted features Φ(xt; θ), the
accumulated features zt of xt are obtained by:

zt = Ψ(zt−1,Φ(xt; θ)) . (1)

Attention-Based Early-Exit
We design an attention-based cascade module to extract
spatio-temporal correlations between successive T video
frames for determining DNN exit points. Each attention
module is implemented as a lightweight two-layer neural
network with an 1×1 convolution kernel, featuring 64 neu-
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rons in the first layer and 32 neurons in the second layer. Let
β denote the attention module with parameter σ that takes
the accumulated features zt and zt−1 as input to generate
attention weights. The aggregated features τt are obtained
from the accumulated features zt as:

τt = W1zt−1 · tanh(W2zt), (2)

where W1 and W2 are the weights to be optimized. The nor-
malized weight β(σt) proportional to video frame complex-
ity can then be obtained from the aggregated features τt:

β(σ)t =
exp(τt)∑
t exp(τt)

. (3)

The early-exit DNN model contains E exit points, each
equipped with a gate unit that enables early exiting. Each
gate is represented as a binary decision function ρ() param-
eterized by µ, which determines whether a video frame has
reached the required accuracy threshold for early exit dur-
ing DNN inference. This way, each gate ρ() is designed to
evaluate the video frame complexity by processing the accu-
mulated features zt and zt−1 along with the attention weight
β(σ)t. Let t∗ denote the earliest frame that meets the exit
condition. The early-exit function et∗ is formulated as:

et∗ = argmin
t

ρ ((zt−1, zt, β(σ)t);µ) . (4)

If no gate meets the exit condition, the entire DNN model is
used for inference.

In the E4 framework, each DNN exit point corresponds to
a classifier. For each exit point, the layer l of each classifier
ft within the given DNN layer indexed by frame t is dynam-
ically determined. Each classifier ft takes the accumulated
features zt as input and predicts the final video label. The
training optimizes the parameters γ of the classifier ft using
the standard cross-entropy loss ℓCE :

Lcls =
1

T

T∑
t=1

ℓCE (ft(zt; γ), y) , (5)

where y is the label of the video frame.
In E4, each gate is implemented as a multi-layer percep-

tron (MLP) with low computational overhead. Specifically,
the two-layer MLP processes the aggregated features zt and
zt−1 along with the normalized weights β(σt), with 64 and
32 neurons per layer, respectively. We optimize the gate pa-
rameter µ using the binary cross-entropy (BCE) loss:

Lgate =
1

T

T∑
t=1

ℓBCE (ρ((zt−1, zt, β(σ)t);µ), y) . (6)

We also use the standard cross-entropy (CE) loss to opti-
mize the parameters σ of the attention network β:

Latt =
1

T

T∑
t=1

ℓCE(β(zt;σ), y). (7)

The final loss to train the early-exit DNN model is:

L = Lcls + Lgate + Latt. (8)

Algorithm 1: CDS-Based Frequency Scaling Algorithm
Input: The DNN exit points et, the CPU-GPU clock fre-
quency range [Cmin, Cmax], [Gmin, Gmax]
Output: The optimal CPU-GPU clock frequency pair
(C∗

f , G
∗
f ) for each layer before et

1: Initialize a dictionary D ← {(Cf0 , Gf0); power}.
2: for round r = 1 to R do
3: while Cf ∈ [Cmin, Cmax] and Gf ∈ [Gmin, Gmax]

do
4: for i = 1 to et do
5: Sample N candidates (Cf , Gf ).
6: for n-th candidate do
7: Profile the energy consumption p.
8: D ← {(Cf , Gf ); power}
9: end for

10: Update the CPU-GPU clock frequency to the
one with the lowest energy consumption.

11: end for
12: end while
13: end for
14: Sort D by the profiled energy consumption.
15: return (C∗

f , G
∗
f ).

Just-In-Time (JIT) Profiler
After analyzing frame complexity and determining the DNN
exit point, we implemented a Just-In-Time (JIT) Profiler to
efficiently identify the optimal power management configu-
rations via coordinate descent search (CDS). CDS is a non-
gradient optimization method focusing the search on one di-
mension at a time while keeping the values of other dimen-
sions fixed. By alternating between dimensions, it converges
to the optimal solution. This approach effectively transforms
multi-variable optimization problems into single-variable
ones, enhancing sampling efficiency. We also compare CDS
performance with other methods like random search, evalu-
ating both latency and energy consumption.

Algorithm 1 outlines our CDS-based dynamic frequency
scaling approach using dynamic voltage and frequency scal-
ing (DVFS) technology. The algorithm takes DNN exit
points et and the CPU and GPU clock frequency ranges
[Cmin, Cmax], [Gmin, Gmax] as input. It initializes a dictio-
nary D to track CPU and GPU clock frequencies along with
the corresponding energy consumption p for each round. For
the searching of optimal settings, the CDS algorithm treats
the layer before each DNN exit point as a separate coordi-
nate. It then alternates the search for the optimal CPU-GPU
clock frequencies for each layer, keeping other coordinates
fixed at their previous optimal values. With each iteration,
CPU-GPU clock frequencies are updated layer by layer. The
process continues until all layers have been optimized, re-
turning the best CPU-GPU clock frequency configuration.
Compared to random search, CDS can find near-optimal so-
lutions more quickly, as demonstrated in our performance
evaluation experiments.

In summary, the CDS-based JIT Profiler effectively finds
the optimal low-power CPU and GPU clock frequencies for
each layer before the DNN exit points, ensuring low-latency.
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Edge GPU Computing Power DRAM CPU GPU Max Power
Jetson Nano 0.47TFLOPS (FP16) 4GB 4×Cortex-A57@1.4GHz 128×Maxwell@0.9GHz 10W
Jetson TX2 1.33TFLOPS (FP16) 8GB 6×Cortex-A57@1.4GHz 256×Pascal@1.3GHz 15W
Jetson Xavier NX 21TOPS (INT8) 8GB 6×Carmel@1.4GHz 384×Volta@1.1GHz 20W
Jetson Orin Nano 40TOPS (INT8) 8GB 6×Cortex-A78AE@1.5GHz 512×Ampere@0.6GHz 15W
Jetson AGX Orin 275TOPS (INT8) 64GB 12×Cortex-A78AE@2.2GHz 2048×Ampere@1.3GHz 60W

Table 1: Configurations of edge devices used in our experiments.

DVFS Governor Settings
We next describe how we customize the DVFS governor
specifically for edge video analytics, adapting it to both
video frames and DNN models. Specifically, we use the
Nvidia nvpmodel (Corporation 2022), a performance gov-
ernor for the Jetson series edge devices, which allows users
to dynamically adjust the CPU and GPU clock frequencies.
For example, the Jetson AGX Orin allows its CPU and GPU
clock frequencies to scale between 0.1 and 2.2GHz, and 0.1
to 1.13GHz, respectively. Based on the identified DNN exit
points, the DVFS governor dynamically adjusts the CPU and
GPU clock frequencies according to the optimal power set-
ting provided by the JIT Profiler. Since DVFS governor op-
erates with millisecond-level latency, the primary overhead
is attributed to the JIT Profiler, which we will evaluate in
detail later.

Implementation and Evaluation
Implementation of E4
E4 prototype: We implemented E4 using Python 3.6 across
five heterogeneous Nvidia edge devices. The specific con-
figurations of edge devices are summarized in Table 1. The
minimum clock frequency for all edge devices is set to
0.1GHz to ensure basic system operation. We utilize
textttjetson-stats (Bonghi 2022) to measure the energy con-
sumption of edge devices during DNN inference.

Baselines: We compare E4 with the following alternatives.
• EENet (Li et al. 2023b) is a state-of-the-art energy effi-
cient inference method incorporating early-exit and DVFS.
It provides frequency and voltage calibration advice over
short timescales by predicting where the DNN model will
exit based on inference workloads and timing constraints.
• zTT (Kim et al. 2021) is a recent workload-aware DVFS
governor that utilizes deep reinforcement learning (DRL) to
adopt to ambient temperature, aiming to optimize CPU and
GPU clock frequencies for energy savings.
• Ring-DVFS (Yeganeh-Khaksar et al. 2020) is a DRL
enhanced DVFS governor designed for multi-core embed-
ded systems, aimed at reducing energy consumption. This
approach is applied to edge devices with heterogeneous
CPU-GPU processors using Nvidia nvpmodel (Corpora-
tion 2022) for a fair comparison.
• E4-R is a reduced baseline of our proposed E4 with CDS
replaced with random search. Random search samples CPU-
GPU clock frequencies and power management configura-
tions randomly, and profiles their energy consumption as the
cost. A cache is used to record all schedules and their as-
sociated costs. After a specified number of search rounds,

random search returns the schedule with the lowest found
energy consumption.

Experimental Setup
DNN models: We utilize EfficientNet-B0 (Tan and Le 2019)
and MobileNet-v2 (Sandler et al. 2018) for edge video
analytics. Both DNN models are pretrained on the Ima-
geNet dataset, with five DNN exit points configured for
each model. We remove the last classification layer from the
backbone and replace it with a fully-connected layer with
1024 neurons. The early-exit DNN models are trained of-
fline using four Nvidia 3080 GPUs with a mini-batch size of
512. Training is conducted with the Adam optimizer and a
learning rate of 10−4.

Datasets: We conduct experiments on two large-scale
datasets: ActivityNet-v1.3 (Caba Heilbron et al. 2015) and
Mini-Kinetics (Kay et al. 2017). ActivityNet-v1.3 is a long-
range action recognition dataset comprising 20,000 videos
across 200 classes (10,024 videos for training, 4,926 for
validation, and 5,044 for testing). Each video has an aver-
age duration of 167 seconds and 1.5 labels. Mini-Kinetics,
provided by (Meng et al. 2020), is a short-range action
recognition dataset featuring 200 classes from the Kinetics
dataset (Caba Heilbron et al. 2015), with 121,215 training
and 9,867 test videos, each averaging 10 seconds in dura-
tion. We use top-1 accuracy to evaluate multi-label classifi-
cation performance in ActivityNet, and mean average preci-
sion (mAP) for multi-class classification on Mini-Kinetics.

Performance Evaluation
Comparison of energy and latency: We compare the in-
ference performance of E4 with other methods across two
DNN models and two datasets, using the five heterogeneous
edge devices listed in Table 1.

Fig. 3(a,c) shows that for video analysis with
EfficientNet-B0 (Tan and Le 2019), energy consump-
tion is primarily driven by non-video analytics system
operation (denoted as “Other”), followed by CPU and GPU
usage for data preprocessing, transmission, and parallel
computing. E4 improves energy efficiency, achieving 20%
to 37% energy saving and a 1.3× to 2.2× speedup. The
performance improvement of E4 is attributed to DNN’s
early-exit mechanism, which significantly reduces com-
putation cost and energy consumption by partial DNN
inference. In comparison, zTT (Kim et al. 2021) and
Ring-DVFS (Yeganeh-Khaksar et al. 2020) focus solely on
optimizing the clock frequency of individual heterogeneous
processors. Even compared to EENet (Li et al. 2023b), a
state-of-the-art energy-efficient inference framework that
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(b) MobileNet-v2 on the ActivityNet-v1.3 dataset
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(c) EfficientNet-B0 on the Mini-Kinetics dataset
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(d) MobileNet-v2 on the Mini-Kinetics dataset

Figure 3: Comparison of energy consumption and inference latency for E4 vs. baseline approaches (EENet, zTT, and Ring).

coordinates early exit and DVFS, E4 has lower inference
latency and higher energy saving, thanks to an attention-
based cascade that cautiously guides early exit and DVFS
governor by analyzing the complexity of video frames.

In Fig. 3(b) and Fig. 3(d), we further examine the video
analytics task using MobileNet-v2 (Sandler et al. 2018). It
can be observed that E4 reduces 18%∼30% energy con-
sumption and achieves 1.4×∼1.9× inference speedup, re-
spectively. Since the computation complexity of MobileNet-
v2 (Sandler et al. 2018) is lower than EfficientNet-B0 (Tan
and Le 2019), the search space of our CDS-based JIT Profile
is limited, which causes the energy-efficient improvement to
be slightly lower than EfficientNet-B0 (Tan and Le 2019).

Moreover, E4 has better performance than E4-R for five
heterogeneous edge devices. The results reveal that although
the random search algorithm is simple, it could significantly
reduce the runtime energy consumption and latency, high-
lighting the advantages of our framework design. Interest-
ingly, we find that compared with edge devices with low
computing power, E4 brings more significant performance
improvement to edge devices with high computing power.
For instance, the performance improvement of Jetson AGX
Orin, which has the highest computing power, is 37% higher
on average than that of Jetson Nano with the lowest com-

puting power. The results are attributed to the fact that high
computing power means a larger frequency range, so that E4
has a larger optimization space.

Impact of number of input frames on accuracy: The ac-
curacy of early-exit in E4 is closely related to the number
of input frames. Intuitively, the higher the number of input
frames, the richer the information of the frames extracted by
the aggregated feature pool, which means higher accuracy,
but higher computational overhead. We evaluate the accu-
racy of E4 by scaling the number of input frames. As shown
in Fig. 4, we report the accuracy of E4 on ActivityNet and
Mini-Kinetics dataset with various frame rates, respectively.
In particular, edge devices with high computing power can
process more video frames within the same time window,
which means better adaptability to frame rates (e.g., the ac-
curacy loss of Jetson AGX Orin is within 1%). For instance,
E4 leverages more video frames for complex objects, and
conversely uses fewer frames to inference simple objects. It
can also be observed that the accuracy of E4 improves with
the number of input frames , but up tp a certain limit. On
the one hand, complex objects may require more frames to
be recognized. On the other hand, the reason why an ex-
cessively high number of frames cannot further improve the
accuracy is attributed to the inability of convolutional neural
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Figure 4: Effect of input frame rate vs. inference accuracy
on (a,b) ActivityNet-v1.3 and (c,d) Mini-Kinetics datasets.

networks in leveraging temporal information. Therefore, we
set T = 20 in our experiments to keep the balance between
accuracy and computational overhead.

Ablation study: We inspect the performance improvement
of different components in E4, including the CDS-based
DVFS governor and the attention-based early-exit frame-
work. For all ablations, we follow the same training proce-
dure explained in Section Experimental Setup. Jetson AGX
Orin is uesd for DNN inference on Activitynet-v1.3 and
Mini-Kinetics dataset, respectively. Table 2 reports the en-
ergy consumption and inference latency for all combina-
tions. We first evaluate the behavior of DVFS governor. De-
spite increasing 12% inference latency on average, DVFS
governor reduces 26% energy consumption, which is desir-
able. We then inspect the impact of attention-based DNN’s
early-exit mechanism. It can be observed that inference
latency and energy consumption are significantly reduced
by 31% and 28% respectively, which is attributed to par-
tial DNN inference, achieving energy saving while reduc-
ing computation cost. Compared with the original DNN in-
ference without DVFS and early-exit, the performance im-
provement of E4 is the most significant, reducing the en-
ergy consumption and inference latency by up to 46% and
73%, respectively. It reveals the effective complementarity
of DVFS governor and DNN’s early-exit mechanism in co-
optimizing energy consumption and inference latency.

Memory usage: As shown in Fig. 5, we report the mem-
ory usage of E4 compared to other approaches. Clearly,
the memory usage of E4 consistently outperforms other
approaches. Compared to the baseline (without early exit
and DVFS), the average memory usage is reduced by up
to 55%, which is promising for resource-constrained (es-
pecially memory) edge devices, further facilitating the de-
ployment of video analytics to edge devices or even mi-
croprocessor units (MCU) with lower resource and power
consumption, thereby reducing costs. Furthermore, E4 re-

DNN DVFS Early-Exit Latency Power

Eff-B0
on Act

✗ ✗ 6.3ms 34.6W
✓ ✗ 7.1ms 23.1W
✗ ✓ 4.6ms 24.5W
✓ ✓ 1.6ms 18.4W

Mob-v2
on Act

✗ ✗ 4.1ms 27.3W
✓ ✗ 4.9ms 21.6W
✗ ✓ 3.4ms 23.1W
✓ ✓ 1.2ms 17.3W

Eff-B0
on Mini

✗ ✗ 3.9ms 23.7W
✓ ✗ 4.3ms 18.2W
✗ ✓ 2.4ms 16.7W
✓ ✓ 1.1ms 12.4W

Mob-v2
on Mini

✗ ✗ 3.2ms 22.7W
✓ ✗ 3.6ms 16.9W
✗ ✓ 1.7ms 14.2W
✓ ✓ 0.8ms 10.6W

Table 2: Ablation studies of DVFS and early-exit on Nvidia
Jetson AGX Orin.
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Figure 5: Comparison of memory usage between E4 and
other approaches using two DNN models for edge video
analysis on the ActivityNet-v1.3 and Mini-Kinetics datasets.

duces memory usage by 45%∼49% compared to zTT (Kim
et al. 2021) and Ring-DVFS (Yeganeh-Khaksar et al. 2020)
without early exit, which is mainly attributed to the mem-
ory saving from early exit. In comparison, the performance
improvement of DVFS technology for energy saving is lim-
ited, saving only 6%∼10% in memory usage compared to
baseline. Although EENet (Li et al. 2023b) coordinates early
exit and DVFS, it does not focus on the complexity of video
frames, thus increasing memory usage by 23% compared to
E4. Overall, early exit dominates memory usage, while the
DVFS technology can further reduce memory usage by fine-
grained tuning of the CPU and GPU clock frequencies.

Conclusions
In this paper, we propose E4, an energy-efficient DNN infer-
ence framework for edge video analytics. E4 introduces two
design knobs to enable energy-efficient DNN inference: the
early-exit mechanism of DNN models and a Just-in-Time
profiler to obtain optimal CPU and GPU clock frequency
configurations. Comprehensive experiments with prototype
implementations on heterogeneous edge devices show that
E4 outperforms state-of-the-art early-exit approaches in
terms of energy consumption and inference latency without
sacrificing accuracy significantly. We earnestly hope that E4
will inspire the community to consider energy as a first-class
resource in DNN optimization in edge video analytics.
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