
9042 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 10, OCTOBER 2024

DVFO: Learning-Based DVFS for Energy-Efficient
Edge-Cloud Collaborative Inference

Ziyang Zhang , Student Member, IEEE, Yang Zhao , Senior Member, IEEE, Huan Li , Senior Member, IEEE,
Changyao Lin , Student Member, IEEE, and Jie Liu , Fellow, IEEE

Abstract—Due to limited resources on edge and different char-
acteristics of deep neural network (DNN) models, it is a big chal-
lenge to optimize DNN inference performance in terms of energy
consumption and end-to-end latency. In addition to dynamic volt-
age frequency scaling (DVFS) technique, edge-cloud architecture
provides a collaborative approach for efficient DNN inference.
However, current edge-cloud collaborative inference methods have
not optimized various compute resources on edge devices. Thus, we
propose DVFO, a novel DVFS-enabled edge-cloud collaborative
inference framework, which co-optimizes DVFS and offloading
parameters via deep reinforcement learning (DRL). Specifically,
DVFO automatically co-optimizes 1) the CPU, GPU and memory
frequencies of edge devices, and 2) the offloaded feature map. In
addition, it leverages a thinking-while-moving concurrent mecha-
nism to accelerate the DRL learning process, and a spatial-channel
attention mechanism to identify the less important DNN feature
map for efficient offloading. This approach improves inference per-
formance for different DNN models under various edge-cloud net-
work conditions. Extensive evaluations using two datasets and six
widely-deployed DNN models on five heterogeneous edge devices
show that DVFO significantly reduces the energy consumption by
33% on average, compared to state-of-the-art schemes. Moreover,
DVFO achieves up to 28.6%∼59.1% end-to-end latency reduction,
while maintaining accuracy within 1% loss on average.

Index Terms—Edge computing, DVFS technology, collaborative
inference, deep reinforcement learning.

I. INTRODUCTION

A S THE development of edge computing [1] and
lightweight deep learning techniques, edge devices

equipped with Internet of Things (IoT) connectivity and hard-
ware accelerators (e.g., GPUs) are becoming capable of ex-
ecuting deep neural network (DNN) in real-time for many
edge intelligence [2] applications, such as defect detection [3],
face recognition [4], and mobile augmented reality [5], just

Manuscript received 26 June 2023; revised 17 January 2024; accepted 17
January 2024. Date of publication 23 January 2024; date of current version 3
September 2024. This work was supported in part by the National Key R&D
Program of China under Grants 2021ZD0110905 and 2022YFF0503900, and
in part by An Open Competition Project of Heilongjiang Province, China, on
Research and Application of Key Technologies for Intelligent Farming Deci-
sion Platform, under Grant 2021ZXJ05A03. Recommended for acceptance by
E. Hossain. (Corresponding authors: Yang Zhao; Jie Liu.)

Ziyang Zhang and Changyao Lin are with the School of Science and
Technology, Harbin Institute of Technology, Harbin 150006, China (e-mail:
zhangzy@stu.hit.edu.cn; lincy@stu.hit.edu.cn).

Yang Zhao, Huan Li, and Jie Liu are with the International Research Institute
for Artificial Intelligence, Harbin Institute of Technology, Shenzhen 518071,
China (e-mail: yang.zhao@hit.edu.cn; huanli@hit.edu.cn; jieliu@hit.edu.cn).

Digital Object Identifier 10.1109/TMC.2024.3357218

to name a few. For instance, autonomous driving [6] requires
running latency-critical DNN inference tasks to achieve both
high real-time performance and satisfactory quality of service
(QoS) [7]. However, compared to cloud servers, edge devices
have fewer compute resources and more stringent power con-
sumption requirements, thus it is more challenging to optimize
DNN inference performance in terms of energy consumption
and end-to-end latency on local edge devices.

To achieve efficient DNN inference on resource-constrained
edge devices, it is a promising approach to reduces the end-
to-end latency or energy consumption of edge devices via
various techniques such as dynamic voltage frequency scaling
(DVFS) [9], [10], and edge-cloud collaborative inference [11],
[12]. DVFS is a low-power technology that dynamically adjusts
the voltage and frequency according to energy consumption.
Prior work [13] has proposed a series of deep reinforcement
learning-based DVFS techniques to reduce energy consumption.
However, DVFS reduces energy consumption by increasing
end-to-end latency, which we illustrate and discuss in Section II.
In addition, none of the existing methods above considers the
edge-cloud collaboration paradigm. The edge-cloud collabo-
rative inference offloads partial DNN feature map from edge
devices to cloud servers, with edge devices inferring partial
DNN, cloud servers executing the rest, and small neural net-
works to fuse them to obtain the final inference results [14]. To
avoid network bottlenecks to achieve offloading DNN feature
map efficiently, prior work utilizes explainable AI [12] and
compressed sensing [14] to compress feature map. However,
the expensive runtime overhead of these schemes still impairs
DNN inference real-time performance.

Combining DVFS and edge-cloud collaboration, prior
work [15] proposes a data offloading scheme, namely DRLDO,
which uses deep reinforcement learning together with DVFS to
reduce energy consumption. However, DRLDO only considers
CPU core voltage and frequency in DVFS, without including
the GPU and memory resources. In addition, it does not con-
sider performance bottlenecks of various DNN models. Recent
benchmarks reveal that GPUs are responsible for around 70%
of the total energy consumption during DNN training [16]. As
shown in Fig. 1, we perform experiments and show that during
DNN inference phase, GPUs also consume more energy than
CPUs for all the DNN models that we have investigated. We
report the normalized energy usage of different compute units
including CPU, GPU, and memory, when executing four DNN
models with CIFAR-100 [8] dataset on an NVIDIA Xavier NX
edge device. The result shows that the energy consumption

1536-1233 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Harbin Institute of Technology. Downloaded on September 11,2024 at 03:58:03 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-2539-8257
https://orcid.org/0000-0003-2080-1270
https://orcid.org/0009-0009-7350-5361
https://orcid.org/0000-0001-6805-2649
https://orcid.org/0000-0001-6209-6886
mailto:zhangzy@stu.hit.edu.cn
mailto:lincy@stu.hit.edu.cn
mailto:yang.zhao@hit.edu.cn
mailto:huanli@hit.edu.cn
mailto:jieliu@hit.edu.cn

ZHANG et al.: DVFO: LEARNING-BASED DVFS FOR ENERGY-EFFICIENT EDGE-CLOUD COLLABORATIVE INFERENCE 9043

Fig. 1. Energy usage of CPU, GPU and memory for four DNN inference
models with CIFAR-100 [8] dataset, measured on NVIDIA Xavier NX. We set
the batch size to 1.

Fig. 2. Inference performance (i.e., latency per mJ) of five heterogeneous edge
devices with different CPU, GPU and memory frequencies for EfficientNet-
B0 [25] and Visual Transformer (ViT-B16) [26] DNN models under CIFAR-
100 [8] dataset. We set the batch size to 1.

of the GPU is 3.1× to 3.5× that of the CPU, indicating that
GPU dominates DNN inference. It can also be observed that
since DNN inference accesses memory frequently, the energy
consumption of the memory is not negligible. In addition, as
shown in Fig. 2, the performance of different DNN models has
diminishing returns as hardware frequencies increase. Learning
DNN model behaviors on different edge devices can further
improve inference performance and energy efficiency. All these
observations motivate us to incorporate CPU, GPU and memory
resources in DVFS, and utilize feature map offloading for DNN
inference on edge devices.

Table I provides a comparison of key features of DVFO with
four dimensions of DVFO to related work, including DVFS
technology and edge-cloud collaborative inference. DVFS tech-
nology enables on-device DNN inference with lower energy
consumption. While DRLDO [15], CARTAD [17] and QL-
HDS [18] have achieved energy-efficient inference on multi-core
CPU systems using DVFS technology, they did not consider
edge devices with CPU-GPU heterogeneous processors, which

TABLE I
COMPARISON OF KEY FEATURES OF DVFO WITH PRIOR WORK

are crucial for GPU-dominated energy-efficient on-device in-
ference. DeepCOD [14] and AgileNN [12] compressed the
offloaded DNN feature map, but the compression overhead is
not negligible. Since most of the works mentioned above do
not combine DVFS with edge-cloud collaborative inference, in
this paper we showcase how to achieve low latency and energy
consumption using learning-based DVFS in an edge-cloud col-
laboration framework.

In order to achieve energy-efficient DNN inference, in this
paper, we propose DVFO, a DVFS enabled learning-based col-
laborative inference framework that automatically co-optimizes
the CPU, GPU and memory frequencies of edge devices, as well
as the DNN feature map to be offloaded to cloud servers. We
need to deal with the following issues to design and implement
such a framework. First, edge-cloud collaborative inference
has dynamic network conditions and intense real-time require-
ments. Deep reinforcement learning (DRL) is effective in deal-
ing with high-dimensional decision and optimization problems,
but existing methods applied to edge-cloud collaboration are
inefficient to deal with the real-world dynamic environment,
e.g., online policy inference cannot catch dynamic environment
changes [21]. Thus, we utilize a concurrency mechanism, called
thinking-while-moving [22], to accelerate policy inference for
agents in DRL, as we discuss in details in Section V-A. Second,
the feature map to be offloaded to cloud servers would have a net-
work bottleneck, which can dramatically increase transmission
latency and energy consumption. We leverage a spatial-channel
attention mechanism [23] to guide feature map offloading [12],
so that the end-to-end latency can be significantly reduced
without sacrificing DNN inference accuracy.

After solving these issues, we perform experiments and com-
pare DVFO with state-of-the-art methods on CIFAR-100 [8]
and ImageNet-2012 [24] datasets. Extensive evaluations show
that DVFO can efficiently balance energy consumption and
end-to-end latency by automatically co-optimizing the hardware
resources of edge devices and the feature map to be offloaded to
cloud servers.

In summary, we make the following contributions:
� We propose DVFO, a novel DVFS enabled edge-cloud

collaborative DNN inference framework that automatically
co-optimizes the hardware frequencies of edge devices, and
the proportion of the feature map to be offloaded to cloud
servers.

� We apply the thinking-while-moving concurrent control
mechanism in learning-based optimization, and we design
an importance-based feature map offloading scheme to
alleviate edge-cloud network bottlenecks by leveraging a
spatial-channel attention mechanism.

Authorized licensed use limited to: Harbin Institute of Technology. Downloaded on September 11,2024 at 03:58:03 UTC from IEEE Xplore. Restrictions apply.

9044 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 10, OCTOBER 2024

� Extensive evaluations on five heterogeneous edge devices
with two datasets show that DVFO reduces energy
consumption by up to 33% on average for various DNN
models, compared to state-of-the-art schemes. DVFO also
achieves 28.6%∼59.1% end-to-end latency reduction,
without scarifying accuracy.

The rest of the article is organized as follows: Section II
highlights our research motivations. Section III briefly describes
deep reinforcement learning we used. Section IV describes
system overview and problem formulation. Section V illustrates
our framework design in detail. Section VI reports experimental
results. Section VII presents related work. Section VIII con-
cludes our work.

II. MOTIVATION

Although DNN models can provide state-of-the-art
performance for many IoT applications, it comes at the cost
of intensive complexity and prohibitive energy consumption.
Therefore, it is critical to be able to efficiently execute DNN
on resource-constrained edge devices. In this section, we
discuss the experiments and observations that motivate us to
develop an efficient DVFS enabled learning-based edge-cloud
collaborative inference framework.

As mentioned in Section I, we perform experiments with two
widely-deployed DNN models (i.e., EfficientNet-B0 [25] and
ViT-B16 [26]), and observe that GPU consumes more energy
than CPU during the DNN inference phase on edge devices.
To better understand the impact of CPU, GPU and memory
frequencies of edge devices on the end-to-end latency and energy
consumption, we further conduct the following experiments and
analysis in Fig. 2. As you can see, we execute memory-intensive
DNN model (e.g., EfficientNet-B0 [25]) and compute-intensive
(e.g., ViT-B16 [26]) DNN model [27] on an NVIDIA Jetson
Nano and NVIDIA Xavier NX edge platform, respectively.

Note that prior work only considers end-to-end latency or
energy consumption as a single metric, which cannot directly
reveal the trade-off between inference performance and energy
requirements. We report the inference performance latency per
mJ, a metric by dividing end-to-end latency by energy consump-
tion. As shown in Fig. 2, we measure the inference performance
of two heterogeneous edge devices with two aforementioned
DNN models under CIFAR-100 [8] dataset using different CPU,
GPU and memory frequencies. We have the following key
observations from our experiments and analysis:
� High frequency does not mean high inference performance:

Intuitively, the higher frequency is, the larger amounts
of energy the system consumes. However, increasing fre-
quency does not improve inference performance (i.e., la-
tency per mJ). Take EfficientNet-B0 [25] as an example,
the energy consumption with the maximum frequency
doubled after 500 MHz, but the end-to-end latency is
not significantly reduced, which means that the inference
performance tends to saturate. Similar phenomenon can be
observed for Vision Transformer (ViT-B16) [26]. There-
fore, a learning approach is needed to automatically find
the appropriate hardware frequencies to achieve optimal
inference performance.

� DNN models with different operation intensities reveal sig-
nificant end-to-end latency and energy differences on het-
erogeneous edge devices: Take for example the NVIDIA
Xavier NX edge platform, which has abundant compute
resources. According to operational density in the roofline
model [27], we can conclude from the Fig. 2(b) that
EfficientNet-B0 [25] is a memory-intensive DNN, because
the performance bottleneck depends on the CPU and mem-
ory frequencies. The ViT-B16 [26] with higher complexity
in Fig. 2(d) is a compute-intensive DNN model, where
GPU frequency dominates performance. However, these
two DNN models are both compute-intensive on Jetson
Nano, which has limited compute resources compared with
Xavier NX. Thus, it illustrates that the same DNN model
exhibit high heterogeneity for edge devices with differ-
ent computing resources, and DVFS alone cannot further
improve inference performance. Therefore, we highlight
that identifying the behavior of various DNN models un-
der heterogeneous devices can further improve inference
performance.

In addition to the observations mentioned above, we also point
out the need to adjust feature map offloading adaptively based
on edge-cloud network conditions for various IoT and mobile
computing applications. Take autonomous driving for example.
More data can be offloaded to cloud, when driving in urban areas
with high quality wireless network connection, while offloading
needs to be reduced for rural areas with limited network band-
width. Thus, it motivates us to learn the feature map offloading
proportion parameter for various network conditions. As shown
in Section VI-D, our DVFO framework can take advantage of
the abundant resources on cloud servers to offload more feature
map for high network bandwidth conditions, while our algorithm
learns to use different offload proportion parameters for poor
network conditions.

To summarize, we highlight two schemes that can achieve
optimal trade-off between energy consumption and end-to-end
latency for energy-efficient DNN inference: (1) dynamic voltage
and frequency scaling (DVFS), and (2) edge-cloud collaborative
inference. Note that the above two schemes are orthogonal. For
instance, DVFS can reduce energy consumption by adjusting
hardware frequency, but it increases end-to-end latency. Edge-
cloud collaborative inference can effectively reduce end-to-end
latency by offloading data while further reducing energy con-
sumption on edge devices.

III. PRELIMINARIES

Deep reinforcement learning (DRL) combines deep learning
and reinforcement learning, where reinforcement learning is
used to define problems and optimize objectives, and deep learn-
ing is used to solve the modeling of policy and value function
(V-function) in reinforcement learning. In general, DRL uses the
back-propagation algorithm to optimize the objective function,
which is suitable for solving complex high-dimensional sequen-
tial decision problems and achieves impressive performance on
many tasks. The agent in DRL is used to perceive the environ-
ment and make decisions, which performs a task by interacting
with the external environment. Meanwhile, the environment

Authorized licensed use limited to: Harbin Institute of Technology. Downloaded on September 11,2024 at 03:58:03 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: DVFO: LEARNING-BASED DVFS FOR ENERGY-EFFICIENT EDGE-CLOUD COLLABORATIVE INFERENCE 9045

Fig. 3. Overview of deep reinforcement learning system.

changes its state by responding to the actions selected by the
agent, and feeds back corresponding reward signals to the agent.

As shown in Fig. 3, most DRL algorithms take the optimiza-
tion problem as a markov decision process (MDP), which can
be described by a tuple: (S,A, π, r, p), where S is the state
space containing all states s(s ∈ S); A is the action space
containing all actions a(a ∈ A); π is the probability distribution
function that determines the next action a according to the state
s, satisfying

∑
a∈A π(a|s) = 1; r is a scalar function, which

means that after the agent makes an action a according to the
current state s, the environment feeds back a reward signal to the
agent. Note that r is related to the state s′ at the next moment due
to hysteresis; p is the state transition probability, which means
that after the agent makes an action a according to the current
state s, the probability that the environment changes to the state
s′ at the next moment, also satisfying

∑
s′∈S p(s

′|s, a) = 1.
The goal of the DRL algorithm is to find an optimal policy π∗

to maximize the following expected return:

π∗ = argmax
θ

Eτ∼p(τ)

[
T−1∑
t=0

γt−1rt

]
, (1)

where τ = s0, a0, r0, s1, a1, r1, . . . , sT−1, aT−1, rT−1 is a tra-
jectory that represents an interaction process between the agent
and the environment. θ is the parameter of policy network, and
γ ∈ [0, 1] is a discount factor. We can obtain the optimal policy
π∗ = argmaxa Q

∗(s, a) by value iteration via the following
the Bellman optimal equation of state-action value function
(Q-function):

Q∗(s, a) = Eτ∼p(τ)[r(st, at) + γ max
at+1

Q∗(st+1, at+1)]. (2)

In Section V-A, we describe the DQN-based DRL algorithm
in detail.

IV. SYSTEM OVERVIEW AND PROBLEM STATEMENT

A. System Overview

Fig. 4 shows an overview of our DVFO framework. The
framework incorporates local DNN inference on edge devices
and remote DNN inference on cloud servers. During DNN
inference, users submit DNN inference tasks to DVFO, along
with user-defined parameters to adjust the trade-off between
energy consumption and end-to-end latency (i.e., the weight
parameter η in (4)), and the workflow starts as follows. ❶
DVFO utilizes a feature extractor on edge devices to extract
high-dimensional features of the input data and obtain DNN

feature map. The feature extractor is implemented based on a
lightweight neural network with negligible overhead. ❷ To alle-
viate network bottlenecks of the feature map to be offloaded to
cloud servers, DVFO utilizes spatial-channel attention module
to evaluate the importance of feature map, in order to guide
the feature map offloading. The attention module details are in
Section V-B. ❸ The DRL-based DVFO module (i.e., DVFO
optimizer) learns the optimal hardware frequency vector and
the proportion parameter of the feature map to be offloaded
to cloud servers for each task based on historical data, current
bandwidth, and user configuration (see Section V-A for more
details). ❹ Based on the optimal hardware frequencies and the
feature map to be offloaded to cloud servers learned by DVFO
optimizer, DVFO retains the top-k features with high importance
for local DNN inference, and then combines the remote DNN
with other compressed less important features via weighted
summation (the summation weight parameter λ ∈ (0, 1) can also
be user-defined), to produce the final prediction result on edge
devices locally. Compared to adding additional neural network
(NN) layers for fusion, such a point-to-point weighted summa-
tion method is much more lightweight and has low computation
overhead on edge [12].

B. Problem Statement

Opportunities to reduce the energy consumption of DNN
inference come at the cost of increased end-to-end latency. When
optimized for energy consumption, DNN end-to-end latency
(i.e., time-to-inference, or TTI) may be impaired. Here we
define the energy consumption of DNN inference as its energy-
to-inference (ETI)

ETI(f , ξ) = TTI(f , ξ)×AvgPower(f , ξ), (3)

where f and ξ are the hardware frequency vector of device, and
the proportion of the feature map to be offloaded to cloud servers,
respectively, and AvgPower is the average power consumption
during inference with configuration (f , ξ). Different from prior
work [15] that only considers the CPU frequency fC , we also
incorporate GPU and memory frequencies of edge devices,
denoted as fG, fM , respectively, that is, f = (fC , fG, fM).

Cost Metric: It is important to define a cost metric in designing
DVFO, so that users can adjust the trade-off between energy
consumption and end-to-end latency based on the application
requirements and their preferences. Thus we propose the fol-
lowing cost metric:

C(f , ξ; η) = η · ETI(f , ξ) + (1− η) ·MaxPower ·TTI(f , ξ),
(4)

where MaxPower is the maximum power limit supported by
device, a constant introduced to unify the units of measure in
the cost metric [28], and η ∈ [0, 1] is a weight parameter that
users define to adjust the balance between energy consumption
and end-to-end latency. In particular, when η = 0, we are only
optimizing energy consumptionETI, whereas when η = 1, only
end-to-end latencyTTI is optimized. A more detailed sensitivity
analysis of the parameter η can be found in Section VI.

End-to-End Latency Model: For a set of DNN inference tasks
X = (x1, x2, . . ., xN) consisting of N independent and non-
preemptive tasks xi, i = 1, . . . , N . We show the optimization

Authorized licensed use limited to: Harbin Institute of Technology. Downloaded on September 11,2024 at 03:58:03 UTC from IEEE Xplore. Restrictions apply.

9046 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 10, OCTOBER 2024

Fig. 4. Overview of the architecture of DVFO framework.

problem in terms of end-to-end latency and energy consumption.
First, for end-to-end latencyTTItotali , it incorporates 1) the com-
puting time on edge for the ith taskTTIlocali , 2) the compression
(quantization) time of the feature map to be offloaded to cloud
servers on edge TTIcomp

i , 3) the transmission time of the of-
floaded feature map to cloudTTIoffi , and 4) the computing time
on cloud TTIcloudi . Note that we ignore the fusion time on edge
devices and the decompression time on cloud servers, benefit
from the lightweight weighted summation-based fusion method
on edge devices in Section V-C and the abundant computing
resources of the cloud servers, respectively.

To be more specific, the computing time on edge TTIlocali

depends on two factors: the size of feature map without of-
floading mlocal

i , and the hardware frequency of edge devices
(fC

local, f
G
local, f

M
local), which can be defined as

TTIlocali =
mlocal

i

(fC
local, f

G
local, f

M
local)

, (5)

Unlike the conventional tasks oriented in prior work [29],
DVFO focuses on inference tasks based on DNN models, that
is, the DNN inference performance depends not only on the CPU
frequency (for data preprocessing), but is also affected by the
GPU frequency (for parallel computation) as well as the memory
frequency (for data copying between the CPU and GPU).

Likewise, the computing time on cloud TTIcloudi depends
on the size of the feature map to be offloaded to cloud
servers mcloud

i , and the hardware frequency of cloud servers
(fC

cloud, f
G
cloud, f

M
cloud)

TTIcloudi =
mcloud

i

(fC
cloud, f

G
cloud, f

M
cloud)

, (6)

The compression time on edge TTIcomp
i depends on the size

of the feature map to be offloaded to cloud serversmcloud
i . In this

work, we use quantization aware training (QAT) in Section VI-A
to effectively compress the offloaded feature map with low-bit
quantization (i.e., converted from float-32 model to int-8 model).
The compression time on edge TTIcomp

i defined as

TTIcomp
i = QAT(mcloud

i), (7)

The transmission time TTIoffi is affected by the size of the
feature map to be offloaded to cloud servers mcloud

i and the
communication bandwidth B, that is

TTIoffi =
mcloud

i

B , (8)

Note that the size of the feature map to be offloaded to cloud
servers mcloud

i is determined by the proportion parameter ξ in
(4).

Therefore, the end-to-end latency TTItotali can be formulated
as follows:

TTItotali = TTIlocali +TTIcomp
i +TTIoffi +TTIcloudi . (9)

Energy Consumption Model: For energy consumption, the
overall energy consumption ETItotali of edge devices for a par-
ticular task xi consists of the energy consumption for computing
ETIci and the energy consumption for offloading ETIoi , that is

ETItotali = ETIci +ETIoi . (10)

To be more specific, the energy consumption for computing
ETIci of ith taskxi depends on the edge computing timeTTIlocali

and the power consumption of edge devices Pi, which can be
defined as

ETIci = TTIlocali ·Pi, (11)

where the power consumption Pi of the edge device is the
summation of dynamic PD

i , static PS
i , and constant PC

i power
consumption [30]. PD

i originates from the activity of the logic
gates inside the processor, which can be derived by PD

i =
CV 2(fC , fG, fM). WhereC is the capacitance of the switching
logic gate. PS

i originates from transistor static current when the
processor is powered on, which is described by PS

i = V NtrIS .
Ntr is the number of logic gates, and IS is the normalized static
current of each logic gate. PC

i is the power consumption of
peripheral devices, such as board fans and peripheral circuitry.

The energy consumption of offloading ETIoi for xi is affected
by the communication bandwidthB of the network between edge
devices and cloud servers, the proportion of the feature map to be
offloaded to cloud servers mcloud

i , and the power consumption
of edge devices Pi, that is

ETIoi =
mcloud

i · Pi

B . (12)

The objective of of DVFO is to minimize the cost in (4)
by automatically exploring the feasible set of edge hardware
frequency vector (fC , fG, fM) and the offloading proportion
parameter ξ. fmin and fmax ensures that hardware frequency
vector (fC , fG, fM) is not beyond its feasible change range
[fmin, fmin] specified in the hardware manual. Put formally in
terms of the cost function defined by (4), our objective becomes

(P) :min
f ,ξ

.C(f , ξ; η)

Authorized licensed use limited to: Harbin Institute of Technology. Downloaded on September 11,2024 at 03:58:03 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: DVFO: LEARNING-BASED DVFS FOR ENERGY-EFFICIENT EDGE-CLOUD COLLABORATIVE INFERENCE 9047

TABLE II
NOTATION AND DESCRIPTION

s.t. fmin ≤ (fC , fG, fM) ≤ fmax

0 ≤ ξ ≤ 1. (13)

For each task, DVFO can automatically co-optimize CPU,
GPU and memory frequencies, as well as the proportion of the
feature map to be offloaded to cloud servers. Note that we assume
cloud servers have enough compute resources to guarantee the
real-time performance of remote inference. We also assume that
edge devices can be put into idle mode after the inference and
offloading operations to save energy.

Complexity Analysis: To represent the search space in DVFO,
let C be the number of available CPU clock frequencies, G
be the number of available GPU clock frequencies, and M be
the number of available memory clock frequencies. Therefore,
there are totalC ×G×M possible options to pick the processor
clock frequencies. Since the objective of DVFO is to co-optimize
the clock frequencies of the processors as well as the proportion
of feature map to be offloaded, the complexity of search space
is O(CGMξ).

It is non-trivial to search exhaustively or greedily for the
optimal joint configuration in polynomial time. To address
this problem, we leverage a learning-based approach to effec-
tively reduce the search space by concurrency control. Deep
reinforcement learning (DRL), as a semi-supervised method,
which does not require manually labeling data, is suitable
for decision-making problems in complex environment, espe-
cially for large-scale state spaces and dynamically changing
environment, where traditional supervised and unsupervised
learning methods are usually powerless. The agent in DRL
can learn the optimal policies by interacting with the envi-
ronment, and does not need a prior knowledge. On this basis,
DRL is capable of autonomous learning and incremental op-
timization in complex environment to address more complex
and realistic problems. In addition, DRL is adaptive, able to
adjust its policies and actions in real time, in response to
changes in the environment and feedback rewards. These prop-
erties make it well suited to the dynamic environment of our
problem.

Table II provides the notation and corresponding descriptions
used in this paper.

V. SYSTEM DESIGN

A. Learning-Based DVFO

In this section, we describe how DVFO determines the hard-
ware frequency vector f and the proportion of feature map
to be offloaded ξ for each task. Inspired by recent learning-
based DVFS methods [20], [31], the problem P in (13), can
be converted to a reinforcement learning (RL) problem [32] to
solve. We first formulate the optimization problem as a markov
decision process (MDP), and utilize deep reinforcement learning
(DRL) to automatically determine the optimal configuration.

To be more specific, the agent in DRL has three components,
namely state, action and reward, which are defined as follows:
� State Space: At each time step t, the agent in DRL will

construct a state space S . We define the weight parameter
η specified by the user, the summation weight parameter λ,
the importance distribution of features x ∼ p(a), and the
current network bandwidth B as state. The above measures
constitute the state space S , denoted as S = {λ, η,x ∼
p(a),B}.

� Action Space: We set the frequency vector fi and the
offloading proportion parameter ξi forxi as actions. There-
fore, the action space can be expressed as A = {fi, ξi},
where fi = (fC

i , fG
i , fM

i) represents the CPU, GPU and
memory frequencies for a particular task xi. For example
(1500, 900, 1200, 0.3) means that 30% of feature map are
executed locally, and the remaining of the feature map are
offloaded to the remote, when the CPU, GPU and memory
frequencies are set to 1500 MHz, 900 MHz and 1200 MHz,
respectively.

� Reward: We propose a novel reward function for DVFO,
which introduces the trade-off between energy consump-
tion and end-to-end latency. To handle the constraints of
(4), the clock frequency range as well as the offloading
proportion of feature map are added to the reward function
R. Therefore, the reward function in DRL is defined as
follows:

R =

{
C(f ,ξ;η)
e−f/ξ , f ∈ [fmin, fmin]

ρ, otherwise
, (14)

where ξ ∈ [0, 1] is the proportion of the feature map to
be offloaded to cloud servers. In the first case, the clock
frequency is within [fmin, fmin], and we calculate the re-
ward based on the cost in (4). Note that we introduce the
parameters f and ξ, with the purpose of giving more reward
when the clock frequency of edge device is higher and the
proportion of feature map is lower. Otherwise, less rewards
will be given. The second case represents that the current
frequency exceeds the specified frequency range, meaning
that the target cannot be achieved even if the minimum or
maximum clock frequency is used. In other words, using
the minimum or maximum clock frequency is actually the
“optimal” action. Therefore, a small negative reward ρ (=
−0.1 experience) is given with penalty.

However, as Fig. 5 shows, most DRL algorithms assume that
the state of the environment is static, in which the agent is
making a decision. That is, the agent first observes the state
and then executes policy inference. However, this blocking

Authorized licensed use limited to: Harbin Institute of Technology. Downloaded on September 11,2024 at 03:58:03 UTC from IEEE Xplore. Restrictions apply.

9048 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 10, OCTOBER 2024

Fig. 5. Action trajectories in blocking and concurrent environment.

approach of sequential execution is not suitable for real-world
dynamic real-time environment. Because the state has “slipped”
after the agent observes the state of the environment and ex-
ecutes an action, i.e., the previous state transitions to a new
unobserved state. This environment is regarded as a concurrent
environment in [22]. In particular, in the edge-cloud collab-
oration environment with strict time constraints, we need to
use DRL to adjust the frequency of edge devices and the pro-
portion of feature map to be offloaded in real-time, according
to the importance of features and network bandwidth. There-
fore, it is crucial to reduce the overhead of policy inference
in DRL. Furthermore, unlike zTT [31] which considers only
a subset of the action space at a time, although this approach
reduces computational complexity, agent fails to fully explore
the environment resulting in sub-optimal performance. Note
that DVFO can provide optimal solution for a particular edge
device.

To overcome these issues, in this work, we utilize DQN [33]
to learn the optimal CPU, GPU and memory frequencies, as
well as the proportion of feature map to be offloaded for edge
devices. We use the concurrency control mechanism to reduce
the overhead of policy inference in DQN with continuous-time
based on a thinking-while-moving mechanism [22]. The right
part of Fig. 5 illustrates this concurrent approach. Specifically,
the agent observes the state of the environment si at time step t.
When it selects an action at+tAS

, the previous action at−H+tAS′
has slid to a new unobserved state st+tAS

, meaning that state
capture and policy inference in concurrent environment can be
executed concurrently. Here H is the duration of the action
trajectory from the state st to st+tH .

We implement policy inference in concurrent environment
by modifying standard DQN. The continuous-time Q-value
function for the concurrent case from (2) can be expressed as
following:

Qπ(s(t), at−1, at, t, tAS)=

∫ t′=t+tAS

t′=t

γt′−tr(s(t′), at−1(t
′)) dt′

+ γtAS max
at+1

EpQ
π(s(t+ tAS), at, at+1, t+ tAS , H − tAS).

(15)

where tAS is the time duration of state capture, policy inference.
The Lemma 3.1. in [22] proved that the concurrent continuous-
time Bellman operator is a contraction, which means that the
concurrent continuous-time Q-function can eventually converge
to the optimal Q-value Q∗ in (2). In this way, agent can explore
in parallel the clock frequency of each processor as well as the
proportion of the feature map to be offloaded. Since the number
of actions per branch is small, all possible values for each domain
can be explored. On the other hand, the thinking-while-moving

Algorithm 1: DVFO Optimization Process.

concurrency control mechanism learns the joint features of all
domains for fine-grained parameter tuning. By doing so, the
complexity of the search space can be reduced from O(CGMξ)
to O(C +G+M + ξ). In DVFO, we employ a thinking-while-
moving mechanism to realize this concurrency control.

Algorithm 1 illustrates the optimization process of DVFO in
detail. We first initialize the parameters of neural network and
replay memory in DRL. Then we take {λ, η,x ∼ p(a),B} as
the initial state. At the start of training, the agent in DRL will
select an action randomly. In each time step t, the agent captures
the state st in a continuous-time concurrent environment, and
chooses an action at using a thinking-while-moving concurrency
mechanism. We use the ε-greedy strategy to explore the environ-
ment. Next, we feed the CPU, GPU, and memory frequencies,
as well as the proportion of feature map to be offloaded, selected
by the agent to frequency controller and feature map offloader,
respectively. Simultaneously, the agent obtains an instant reward
r, and the state changes from st to st+1. We store the current
state, action, reward, and the state of the next time step as a
transition in the replay memory. At each gradient step, we first
sample mini-batch transitions from replay memory randomly.
Then we use (15) to calculate the Q-value in the concurrent
environment and update the network parameters using gradient
descent. Finally, we deploy the trained DVFO online to evaluate
the performance. Note that the training process is offline.

Authorized licensed use limited to: Harbin Institute of Technology. Downloaded on September 11,2024 at 03:58:03 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: DVFO: LEARNING-BASED DVFS FOR ENERGY-EFFICIENT EDGE-CLOUD COLLABORATIVE INFERENCE 9049

Fig. 6. Overview of spatial-channel attention module (SCAM). The module has two sequential sub-modules: channel attention module and spatial attention
module. The intermediate feature map are divided into the top-k features with high importance and the remaining less important features by SCAM, which are
executed by local DNN and remote DNN, respectively.

B. Spatial-Channel Attention Module

The feature map in DNN [12] is the data computed in a layer
of a deep neural network (DNN). Specifically, given input data
(e.g., an image), the feature map of a DNN is computed by
utilizing a specific transformation (e.g., convolution, pooling,
activation function, etc.) on a particular layer of the neural
network. This transformation is determined by the weights and
biases of the neural network, and these weights and biases can
be learned during training. The goal of feature map is to extract
useful features of the input data so that the neural network can
utilize them for tasks (e.g., classification, regression, etc.). Note
that feature map is closely related to DNN. In convolutional
neural networks (CNN), feature map is critical because is intu-
itively reveals how the neural network extracts features from the
input data. For instance, at early layers of a CNN, feature map
shows that the neural network extracting edges or color patches
of an image, while at deeper levels, feature map might show that
the network extracting more complex features, such as faces or
vehicles.

In practice, we leverage existing deep learning frameworks
to determine the feature map of unknown DNN through the
following procedures: 1) forward propagation: the input data is
forward propagated via neural network, which involves a series
of weight matrices, biases and activation functions. 2) selection
of layers: a particular layer of the feature map is selected, which
can be any convolutional layer, fully connected layer, or other
type of layer. 3) extracting activations: for the selected layer, the
activations corresponding to the input data, i.e., the feature map,
is extracted. 4) visualization: use explainable tools to visualize
the extracted feature map. Note that the above procedures may
vary depending on the specific deep learning framework (such
as TensorFlow, PyTorch, etc.) or specific network type (such as
CNN, RNN, Transformer, etc.).

Our experiments show that the Pearson correlation coefficient
between the importance-based indexing and inference contribu-
tions of each layer in the DNN is −0.738, which means there
is a linear negative correlation between these two variables.
Furthermore, we also propose a neural network-based spatial-
channel attention module in Fig. 6 to reveal this correlation more
intuitively.

The effectiveness of offloading in DVFO depends on the
skewness [12] of the importance distribution of feature map.

The higher the skewness, the fewer features dominate DNN
inference. Therefore, we leverage a spatial-channel attention
mechanism, namely spatial-channel attention module (SCAM)
as shown in Fig. 6, to evaluate the feature importance of input
data. Attention is a widely used deep learning technique that
allows a network to focus on relevant parts of the input, and
suppress irrelevant ones. We use it to identify the high important
features and the remaining less important features for guiding
feature map offloading.

In this way, we can reduce transmission latency by offloading
the compressed less important features without significantly
sacrificing the accuracy of DNN models. Note that our proposed
SCAM is transparent to the DNN’s architecture. In other words,
once the feature map of a DNN has been determined using
existing deep learning frameworks, SCAM is able to evaluate the
importance of feature map without priori knowledge. Therefore,
SCAM is applicable to DNNs with any architecture.

Given a feature map F ∈ R
C×H×W extracted by feature

extractor as input, SCAM sequentially infers a 1D channel
attention map Mc ∈ R

C×1×1 and a 2D spatial attention map
Ms ∈ R

1×H×W . For the arrangement of sequential process,
experimental results in [23] show that channel-first is better than
spatial-first. We next describe the details of each module.

1) Channel Attention Module: In general, since each channel
of a feature map in DNN is considered as a feature detector,
the channel attention module in SCAM focuses on “what” is
meaningful given an input data. To fully extract richer channel
attention, we aggregate the spatial information of the feature map
using average pooling (AvgPool) and max pooling (MaxPool).
We then feed the generated average-pooled features and max-
pooled features into a shared network consisting of multi-layer
perceptron (MLP) to obtain channel attention map. The channel
attention is computed as follows:

Mc(F) = σ(MLP(AvgPool(F)) +MLP(MaxPool(F))),
(16)

where σ denotes the sigmoid function.
2) Spatial Attention Module: As a complement to channel

attention, spatial attention focuses on “where” is an informative
part. We also use average pooling and max pooling along the
channel axis to aggregate spatial information of feature map. The
generated average pooling features and max pooling features

Authorized licensed use limited to: Harbin Institute of Technology. Downloaded on September 11,2024 at 03:58:03 UTC from IEEE Xplore. Restrictions apply.

9050 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 10, OCTOBER 2024

Fig. 7. Inference contribution of each layer in ResNet-18 [34] to CIFAR-
100 [8] dataset (descending order).

are concatenated and convolved by a 3 × 3 convolutional layer
to generate a spatial attention map. The spatial attention is
computed as follows:

Ms(F) = σ (Conv(3, 3)[AvgPool(F);MaxPool(F)]) ,
(17)

where Conv(3, 3) represents a convolution operation with a
filter size of 3 × 3.

Arrangement of Attention Modules: Based on the channel
attention map and spatial attention map obtained by (16) and
(17), we can obtain the final attention mapFout by element-wise
multiplication.

Fin = Mc(F)⊗ F,

Fout = Ms

(
Fin

)⊗ Fin, (18)

where ⊗ denotes element-wise multiplication, Fin is the inter-
mediate attention map. We can derive the importance distribu-
tion of features x ∼ p(a) from the normalized weights in final
attention map Fout, where x represents the feature map index,
and a ∈ (0, 1) is the normalized feature importance.

Fig. 7 illustrates the descending inference contribution of each
layer in ResNet-18 [34] for CIFAR-100 [8] dataset, which evalu-
ated by SCAM. Intuitively, only a few features make major con-
tributions to DNN inference (e.g., top-3 features with the highest
importance dominate 60% of contribution for the whole DNN
feature map), while a large number of remaining less important
features contribute insignificantly to DNN inference. In this way,
we can evaluate the importance of different features and keep the
top-k features with high importance for edge execution, while
the remaining less important features are compressed, and then
offloaded for remote execution. Compared with other explain-
able AI (XAI) approaches (e.g., CAM [35], Grad-CAM [36],
etc.), SCAM is a lightweight and general module that can be
integrated into DNN architecture with negligible overhead and
trained end-to-end together with DNN models.

In addition, offloading the less important feature map is also
a challenge especially with low edge-cloud network bandwidth.
Inspired by SPINN [11], we introduce precision quantization
(i.e., convert the feature map with 32-bit floating-point numbers
to 8-bit fixed-length numbers) that compress the less important
feature map to further reduce transmission latency. In this way,
DVFO can effectively reduce the size of the less important
feature map without significant information loss.

Fig. 8. Impact of (a) TOPS metric α and (b) network bandwidth B on the
summation weight parameter λ. We use EfficientNet-B0 DNN model.

C. Combining Local and Remote Inference Results

DVFO leverages a spatial-channel attention mechanism to
infer the high important feature map on edge devices, while
cloud servers infer the remaining less important feature map. In
order to efficiently and accurately fuse the inference results of
both edge devices and cloud servers, DVFO applies weighted
summation to fuse the inference results, and produces the final
inference output at edge devices locally.

However, it is indeed a challenge to adaptively adjust the
summation weight parameter used in the DVFO framework. To
address this issue, we introduce the tera operations per second
(TOPS) performance metric α, an include both effects of the
TOPS metric and network bandwidth B in the determination of
the summation weight parameter λ. We perform experiments
and collect data on five different edge devices with different
network bandwidth conditions to collect data for training the
summation weight parameter. In addition, DVFO can further in-
corporate techniques, such as few-shot learning [37] and transfer
learning [38], to learn DNN parameters more efficiently, when
no sufficient data is available.

We leverage a two-layer lightweight convolutional neural
network with 16 neural network units per layer, to optimize the
summation weight parameter λ using stochastic gradient descent
(SGD) algorithm [39], and deploy the trained λ in DVFO. By
doing so, DVFO can flexibly adjust the weights of each compo-
nent based on the TOPS metric of the edge device and changes
in network bandwidth to optimize the overall performance. We
evaluate in detail the effect of weighted summation on accuracy
and energy consumption in Section VI-E.

As shown in Fig. 8(a), the summation weight parameter λ

is proportional to the TOPS metric α of local edge device.
Obviously, the higher the TOPS metric of edge device, the larger
the contribution of local inference results. Fig. 8(b) reports the
effect of network bandwidth on the summation weight parame-
ter. It can be concluded that the higher B, the smaller α, which
means that the weight of local inference results decreases with
the improvement of network bandwidth, and on the contrary,
remote inference dominates the combination results.

Weighted summation in DVFO we used has the following
advantages, compared to neural network-based prior work such
as adding an extra convolutional layer for fusion [14]. First,
the inference outputs of edge devices and cloud servers always
maintain the same dimension. In contrast, using neural network
(NN) layers (e.g., a fully connected or convolutional layer) to
fuse these two outputs could possibly break such data alignment,

Authorized licensed use limited to: Harbin Institute of Technology. Downloaded on September 11,2024 at 03:58:03 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: DVFO: LEARNING-BASED DVFS FOR ENERGY-EFFICIENT EDGE-CLOUD COLLABORATIVE INFERENCE 9051

TABLE III
SPECIFIC PARAMETERS OF THE EDGE-CLOUD COLLABORATION DEVICE

Fig. 9. DVFO prototype implementation deployed on NVIDIA Xavier NX
edge platform for edge inference services. We use an IMX camera and a
micorphone as IoT devices.

hence reducing the accuracy of the final inference. Second,
such lightweight point-to-point weighted summation has less
computation than neural networks, and adds negligible overhead
relative to the inference at edge devices locally.

VI. PERFORMANCE EVALUATION

A. DVFO Implementation

As shown in Fig. 9, we use PyTorch 1.8 to implement DVFO
on an edge device, i.e., NVIDIA Xavier NX for inference
service as a case study. An IMX camera and a microphone
are used as IoT device to generate image and speech data.
Our proposed Algorithm 1 in learning-based DVFO is trained
offline with four NVIDIA GeForce GTX 3080 GPUs, and we
convert the local DNN from a float-32 model into an int-8
model using quantization aware training (QAT) supported by
PyTorch. Different from post training dynamic quantization
(PTDQ) and post training static quantization (PTSQ), QAT turns
on the quantization function during the training process. Since
quantization essentially converts the high precision of the model
into low precision, which is likely to cause model performance
degradation. In this case, QAT is better than PTDQ and PTSQ. In
addition, both the network and target network with the prioritized
experience replay and ε-greedy policy in DRL are trained using
Adam optimizer. Each network has three hidden layers and one
output layer, and each hidden layer has 128, 64, and 32 neural
network units, respectively. We set the learning rate, buffer size
and minibatch to 10−4, 106 and 256, respectively.

Table III lists specific parameters of edge devices and cloud
servers used in DVFO. DVFO controls the CPU and GPU clock
frequencies of edge devices whose specifications are shown
in Table III. For instance, the CPU of Jetson NX has a clock

frequency range of 0.1 GHz to 1.4 GHz, and the GPU clock
frequency range of 0.1 GHz to 1.1 GHz. Due to communication
overhead limitations, we select only one edge device and one
remote server for edge-cloud cooperative inference in our exper-
imental evaluation. Intuitively, the remote servers used in DVFO
could also be replaced edge devices with high performance.
Furthermore, we use nvpmodel, a power management tool from
NVIDIA, which support flexible hardware frequency scaling
on-device.

B. Experiment Setup

Datasets and DNN Models: We evaluate DVFO on CIFAR-
100 [8] and ImageNet-2012 [24] datasets, respectively. The
images with different sizes can comprehensively reflect the
diversity of input data. Due to limited compute resources on
edge devices, we set the batch size to be one for edge-cloud
collaborative inference. We successfully integrated DVFO with
state-of-the-art DNN models and thoroughly evaluated DVFO in
the following three typical applications: object detection, image
classification, and speech recognition. Apart from EfficientNet-
B0 and ViT-B16, we additionally use six DNN models in
Table V from three popular DNN families to process image and
speech data, as these DNN models comprise most of edge ap-
plications. Moreover, the remote DNN in DVFO is constructed
by removing the first convolutional layer from the benchmark
DNN [12].

Energy Consumption Measurement: As described in Sec-
tion IV-B, the overall energy consumption of edge devices
incorporates computing and offloading energy consumption.
To be more specific, we use jetson-stats [40], an open source
monitoring toolkit to periodically profile and record the overall
energy consumption of edge devices in real time.

Baselines: We compare DVFO with the following four ap-
proaches. Note that all experimental results are averaged over
the entire test dataset.
� AppealNet [19]: An edge-cloud collaborative framework

that decides whether the task uses a lightweight DNN
model on edge devices or a complex DNN model on cloud
servers by identifying the difficulty of the input data.

� DRLDO [15]: A DVFS-aware offloading framework that
automatically co-optimizes the CPU frequency of edge
devices and the offloaded input data.

� Cloud-only: The whole feature map are offloaded to cloud
servers without edge-cloud collaboration inference.

� Edge-only: The whole model is executed on edge devices
without edge-cloud collaboration inference.

Since AppealNet deploys DNN with different complexity at
edge devices and cloud servers, respectively, we use the same
DNN, including DVFO all the time, in order to make fair

Authorized licensed use limited to: Harbin Institute of Technology. Downloaded on September 11,2024 at 03:58:03 UTC from IEEE Xplore. Restrictions apply.

9052 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 10, OCTOBER 2024

Fig. 10. Comparison of end-to-end latency and energy consumption for
EfficientNet-B0 and Vision Transformer using Edge-only and edge-cloud col-
laborative inference on CIFAR-100 [8] and ImageNet-2012 [24] datasets.

comparisons among different approaches. In addition, we use
the same quantization (i.e., QAT) for AppealNet, DRLDO, and
Cloud-only. All experimental results are reported on the edge
devices listed in Table III. NVIDIA Xavier NX as the default
edge device, unless otherwise mentioned. By default, we use
η = 0.5 to balance energy consumption and end-to-end latency,
and we test η from 0 to 1 in Section VI-E. The summation weight
parameter λ is initialized to 0.5, and we also test λ from 0 to 1 in
Section VI-E.

C. Comparison of Inference Performance

We first compare the inference performance of DVFO with
baselines. We use trickle, a lightweight bandwidth control suite
to set the transmission rate of the network bandwidth to 5 Mbps.
Fig. 10 shows the performance comparison of EfficientNet-B0
and ViT-B16 DNN models on different datasets. We can see
that DVFO consistently outperforms all baselines. To be more
specific, the average energy consumption of these two DNN
models using DVFO is 18.4%, 31.2%, 39.7%, and 43.4% lower
than DRLDO, AppealNet, Cloud-only, and Edge-only, respec-
tively. Meanwhile, DVFO significantly reduces the end-to-end
latency by 28.6%∼59.1% on average. Since the DNN is ex-
ecuted on edge devices, the end-to-end latency of Edge-only
is higher than other approaches. Cloud-only is more sensitive
to bandwidth fluctuations that leads to the highest end-to-end
latency compared to other edge-cloud collaboration approaches.

Compared with DRLDO and AppealNet, the reduction of
energy consumption and end-to-end latency mainly have the fol-
lowing two aspects: 1) Co-optimization of frequency and propor-
tion of offloading: DRLDO only optimizes CPU frequency and
offloading proportion. Since DVFO also takes GPU and memory
frequencies as decision variables in DRL, which can optimize
the hardware frequency to further reduce energy consumption
and end-to-end latency. In addition, AppealNet does not utilize
DVFS technology to optimize frequency, therefore its energy
consumption is higher than DVFO. More importantly, binary
offloading in AppealNet is more sensitive to network bandwidth

Fig. 11. Comparison of benchmark DNN inference accuracy on different
datasets. We set the batch size to 1.

than partial offloading. 2) Lightweight offloading mechanism:
Compared with DRLDO and AppealNet that need to offload the
original feature map to cloud servers, DVFO combines attention
mechanism with quantization technology to compress the less
important feature map to be offloaded, without losing much
information.

Fig. 11 shows that DVFO can maintain similar inference
accuracy to Edge-only (i.e., the loss of accuracy is within 2%),
compared to other baseline methods with significant drop in
accuracy. Note that Edge-only performs uncompressed original
feature map and thus achieves the highest accuracy. Since Ap-
pealNet and Cloud-only leverage the same compression tech-
nique for binary offloading (i.e., compress the whole feature
map), they suffer from similar accuracy loss, which signifi-
cantly reduces accuracy. DRLDO leverages the partial offload-
ing mechanism similar to DVFO. However, DVFO leverages
a lightweight weighted summation-based fusion method, the
accuracy, therefore, is higher than that of DRLDO. Such results
illustrate the effective offloading for DVFO, which utilizes an
attention mechanism to identify the less important features
combined with high precision quantization aware training to
minimize accuracy loss.

In Fig. 12, we report the trend of the hardware frequencies
with inference process on EfficientNet-B0 and ViT-B16 un-
der different datasets, respectively. We take the inference of
EfficientNet-B0 in Fig. 12(a) under CIFAR-100 [8] dataset as an
example for analysis. The whole end-to-end latency consists of
❶ edge inference, ❷ sum of offloading and compression, and ❸
cloud inference (including fusion operations). We can conclude
from Fig. 2 that EfficientNet-B0 is memory-intensive DNN
model, so that the frequencies of CPU and memory dominate
edge inference, while the frequency of GPU has not yet come
close to the performance bottleneck. In contrast, the ViT-B16
DNN model with compute-intensive properties has a significant
increase in the GPU frequency during edge inference (Fig. 12(b)
and (d)), which means that ViT-B16 can effectively utilize
the GPU. Moreover, since DVFO adopts the attention-based
lightweight compression mechanism in Section V-B and the
concurrent offloading strategy with negligible overhead (i.e.,
thinking-while-moving) in Section V-A, the offloading and com-
pression operations have extremely low hardware frequencies,
which can save energy while reducing the offloading latency.
For cloud inference, edge devices does not involve inference,
offloading, and compression operations, so that DVFO only

Authorized licensed use limited to: Harbin Institute of Technology. Downloaded on September 11,2024 at 03:58:03 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: DVFO: LEARNING-BASED DVFS FOR ENERGY-EFFICIENT EDGE-CLOUD COLLABORATIVE INFERENCE 9053

Fig. 12. Trend of hardware frequencies of NVIDIA Xavier NX with the
execution process for EfficientNet-B0 and ViT-B16 under CIFAR-100 [8] and
ImageNet-2012 [24] datasets, respectively. The execution process consists of ❶
edge inference, ❷ sum of offloading and compression, and ❸ cloud inference
(including fusion operations).

Fig. 13. Comparison of concurrent DQN in DVFO with five state-of-the-art
(SOTA) and popular DRL algorithms.

needs to maintain the hardware frequencies at which the system
normally operates.

Furthermore, we evaluate the policy performance (i.e., cumu-
lative rewards) of our proposed concurrent DQN with thinking-
while-moving, compared to six state-of-the-art (SOTA) and
baseline DRL algorithms. As shown in Fig. 13, Distributional
Soft Actor-Critic [41] (DSAC) introduces a value distribution
learning principle to alleviate the overestimation problem [33]
of the V-function and stabilize the learning process, based on
the maximum entropy reinforcement learning framework, i.e.,
Soft Actor-Critic [42] (SAC). As a SOTA DRL algorithm,
DSAC with three refinements (DSAC-T) [43] further inhibit
the overestimation to improve the policy performance after
convergence by leveraging expected value substituting, twin
value distribution learning, and variance-based critic gradient
adjusting. However, DSAC and DSAC-T are not applicable to
a dynamic environment with sequential decisions. In contrast,
our proposed concurrent DQN algorithm encourages the agent in

Fig. 14. End-to-end latency of EfficientNet-b0 and ViT-B16 for CIFAR-
100 [21] and ImageNet-2012 [24] datasets under different network bandwidths.

DRL to explore more environmental states within the same time,
enabling it to solve the co-optimization problem in DVFO more
efficiently and consistently, its policy performance, therefore,
outperforms DSAC and DSAC-T. In addition, compared to four
baseline DRL algorithms, i.e., SAC [42] and DDPG [44], which
are based on Off-policy (where data from historical policies can
be utilized for learning), as well as PPO [45] and TRPO [46],
which are based on On-policy (where data from the current
policy can only be utilized for learning), our concurrent DQN has
more significant policy performance improvements in dynamic
concurrent environments.

D. Impact of Network Bandwidth

As mentioned before, edge-cloud network bandwidth may
be a bottleneck for efficient feature map offloading, thus it is
important to evaluate the performance of DVFO on different net-
work bandwidth conditions. Due to energy and cost constraints,
edge devices are equipped with WiFi modules that have lower
transmission rates compared with cloud servers. Here we set the
network bandwidth between 0.5 Mbps and 8 Mbps to simulate
different network conditions.

The results in Fig. 14 illustrate that the trend of end-to-end la-
tency for EfficientNet-b0 and ViT-B16 with various edge-cloud
collaboration approaches using CIFAR-100 [21] and ImageNet-
2012 [24] datasets under different network bandwidths. Benefit
from offloading the less important feature map, the end-to-end
latency of DVFO is lower than other baselines, even if the
available network bandwidth is only 0.5 Mbps, which can
effectively reduce the end-to-end latency by 27.3%∼44.6%.
We also observe that the performance improvement of DVFO
decreases when the network bandwidth increases. It means that
the network bandwidth is no longer a bottleneck. The perfor-
mance improvement is mainly the appropriate adjustment of the
hardware frequency for edge devices.

In contrast, the performance of three baselines are highly
dependent on network bandwidth. On the one hand, the bi-
nary offload mechanism of ApplealNet and Cloud-only offloads

Authorized licensed use limited to: Harbin Institute of Technology. Downloaded on September 11,2024 at 03:58:03 UTC from IEEE Xplore. Restrictions apply.

9054 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 10, OCTOBER 2024

Fig. 15. Offloading proportion ξ of EfficientNet-b0 for CIFAR-100 [21] and
ImageNet-2012 [24] datasets under different network bandwidths.

all data to the cloud servers. In particular, the hard-case dis-
criminator of ApplealNet adds additional overhead compared
to Cloud-only, which has the highest end-to-end latency, and
Cloud-only takes second place. While DRLDO offloads part of
the input data to cloud servers, the original data is not com-
pressed. In addition, the think-while-moving concurrent offload
mechanism in DVFO is faster than the conventional reinforce-
ment learning-based offloading method in DRLDO, and thus has
the lowest end-to-end latency. Overall, DVFO can make better
adaptive adjustments to proportion of offloading and the hard-
ware frequency of edge devices with the fluctuation of network
bandwidth.

Furthermore, we report the trend of the offloading propor-
tion parameter ξ on different bandwidth conditions. As shown
in Fig. 15, the offloading proportion parameter ξ in DVFO
increases with the bandwidth improvement. Specifically, only
about 20% of the feature map are offloaded to the cloud servers
when the bandwidth is 0.5 Mbps. This is due to the fact that
costly communication latency at low bandwidth overlaps the
benefits of offloading, so that DVFO tends to local inference. In
constrast, the offloading proportion of DVFO is up to 70% at
the 8 Mbps high bandwidth, which indicates that the offloading
benefit is much higher than the communication overhead.

Note that the input size of different datasets and DNN models
with different operation intensities also affect the offloading
proportion of feature map. For instance, the offloading propor-
tion for ImageNet-2012 dataset in Fig. 15(b) is 18.7% higher
on average than the CIFAR-100 dataset in Fig. 15(a) with the
same bandwidth. Similarly, the offloading proportion of ViT-
B16 with two datasets is 12% higher on average than that of
EfficientNet-b0 under different bandwidths. Since the input size
in the ImageNet-2012 dataset and ViT-B16 are more complex
than the CIFAR-100 dataset and EfficientNet-b0 respectively, it
means that inference requires more computing resources. There-
fore, DVFO tends to offload more feature map to cloud servers
with abundant computing resources. In summary, DVFO is able
to adaptively adjust the offloading proportion of feature map
under different bandwidths, which also explains the performance
improvement of DVFO with increasing bandwidth in Fig. 14.

E. Sensitivity Analysis

1) Impact of the Summation Weight Parameter λ: Taking
EfficientNet-b0 [25] as an example, Fig. 16(a) and (b) shows the
impact of the summation weight parameter λ on the performance

Fig. 16. Sensitivity analysis of the summation weight parameter λ on different
datasets. We use EfficientNet-b0 [25] as a test case.

Fig. 17. Sensitivity analysis of weight parameter η on different datasets. We
use EfficientNet-b0 [25] as a test case.

of CIFAR-100 [21] and ImageNet-2012 [24] datasets, respec-
tively. It can be seen that energy consumption and inference
accuracy improve with the increase of λ. In particular, a smaller
λ (≤ 0.2) significantly decreases accuracy, while a higher λ

(≥ 0.8) sharply increases inference energy consumption. The
intuition behind this is that a smaller λ reduces the contribution
of important features locally, which misses some important
information in inference and degrades accuracy. In contrast, in-
creasing the value of λ, forces the majority of the inference tasks
to the local DNN, which leads to higher energy consumption.
Note that the optimal value of λ depends on the characteristics
of the data in the training dataset. In practice, setting λ to an
appropriate value between 0.4 and 0.6 can effectively reduce
energy consumption while maintaining high accuracy.

2) Impact of the Relative Importance Coefficient η: In
Fig. 17, we also take EfficientNet-b0 [25] as an example to show
the impact of weight parameter η that trade-off between energy
consumption and end-to-end latency, given different datasets.
We observe that DVFO significantly reduces energy consump-
tion with increasing values of η (≥ 0.1), while maintaining low
end-to-end latency η (≤ 0.6). Specifically, compared to η = 0.1,
even though DVFO reduced end-to-end latency by up to 39.2%
at η = 0.4 on CIFAR-100 [8] dataset, the energy consumption is
only increased by 16.5%. We also observe a similar phenomenon
on the ImageNet-2012 [24] dataset. In summary, DVFO al-
lows users to adjust the trade-off between energy consump-
tion and end-to-end latency by selecting an appropriate weight
parameter η.

F. Comparison of Various Fusion Methods

In this section, we compare the accuracy loss and runtime
overhead (i.e., energy consumption and end-to-end latency)
induced by weighted summation in DVFO and NN-based fusion
methods, compared to single-device inference (without fusion).

Authorized licensed use limited to: Harbin Institute of Technology. Downloaded on September 11,2024 at 03:58:03 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: DVFO: LEARNING-BASED DVFS FOR ENERGY-EFFICIENT EDGE-CLOUD COLLABORATIVE INFERENCE 9055

TABLE IV
COMPARISON OF VARIOUS FUSION METHODS

Fig. 18. Comparison of runtime overhead for different fuse methods.

In particular, it can be seen from Fig. 16 that the appropriate value
ofλhas different preferences under different datasets. To achieve
high accuracy while maintaining low energy consumption, we
set λ to 0.5 for CIFAR-100 [21] and 0.6 for ImageNet-2012 [24],
respectively. We use a filter size of 3 × 3 and a softmax function
to implement a convolutional layer and a fully connected layer
for fusing inference results, respectively.

As shown in Table IV, the weighted summation we used
in DVFO can achieve the lowest accuracy loss (within 1%),
compared to single-device inference. This is due to weighted
summation enables both the inference results of edge devices
and cloud servers to maintain a highly consistent data align-
ment, and such lightweight point-to-point weighting has low-
complexity with negligible overhead. The main challenge of
weighted summation is that the output of Local DNN at edge
devices and Remote DNN at cloud servers may potentially have
a big difference. For instance, a few but the output values with
high importance in Local DNN could be overlapped by the
output values with less importance in Remote DNN. We can
maintain λ in an appropriate range by manual fine-tuning or
utilizing a learning-based adaptive strategy in DVFO, thereby
minimizing the additional inference accuracy loss that may
result. In contrast, neural network-based fusion approaches (i.e.,
fully connected layers and convolutional layers) have signif-
icant accuracy loss, which is 6.7 × and 12.3 × that of the
weighted summation in DVFO, respectively. As pointed out
in Section V-C, neural network-based fusion approaches break
the alignment of weighted values and thus significantly reduce
inference accuracy.

As shown the result in Fig. 18, we compare the runtime
overhead of weighted summation and NN-based fusion methods
(i.e., convolutional and fully connected layers). First, in terms
of energy consumption in Fig. 18(a), compared to the NN-based
fusion method, the energy consumption of weighted summation
is reduced by 56.8% on average. Second, weighted summation
reduces the average end-to-end latency by up to 77.5%, as
shown in Fig. 18(b). It also illustrates the energy efficiency of

Fig. 19. Training performance of DVFO with/without a thinking-while-
moving mechanism on CIFAR-100 [21] and ImageNet-2012 [24] datasets. We
use EfficientNet-b0 [25] as a test case.

Fig. 20. Comparison of runtime overhead for different datasets.

such lightweight point-to-point fusion methods. In contrast, the
NN-based fusion methods significantly reduce energy efficiency
due to inherently expensive computation.

G. Overhead Analysis

1) Training Overhead: We first evaluate the training over-
head comparison of DVFO with/without a thinking-while-
moving training strategies, here we use EfficientNet-b0 [25] on
CIFAR-100 [21] and ImageNet-2012 [24] datasets as a test case.
As shown in Fig. 19, DVFO with thinking-while-moving shows
faster convergence during the training procedure, indicating
that although the attention module increases the complexity of
learning, DVFO can still guarantee fast convergence of training
by designing appropriate cost metrics and parallel strategies.

2) Runtime Overhead: The attention module in DVFO in-
troduces additional runtime overhead. We evaluate the energy
consumption of the attention module (i.e., SCAM) averaged
over 10 inference. As shown in Fig. 20, DVFO consumes less
energy due to uses an extremely lightweight attention module.
The energy consumption of DVFO is 38%∼62% lower than
AppealNet and 63%∼71% lower than DRLDO.

H. Evaluation of Scalability

In this section, we evaluate the scalability of DVFO for
various DNN models. Note that we performance extensive ex-
periments on heterogeneous edge devices (i.e., Jetson Nano,

Authorized licensed use limited to: Harbin Institute of Technology. Downloaded on September 11,2024 at 03:58:03 UTC from IEEE Xplore. Restrictions apply.

9056 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 10, OCTOBER 2024

TABLE V
EVALUATION OF SCALABILITY FOR EDGE INFERENCE SERVICES

Jetson TX2, Orin NX and AGX Orin in Table III), but our DVFO
framework is also applicable to homogeneous edge devices in
general. We take the widely-deployed deep learning models,
ResNet-18 [34], Inception-v3 [47], and MobileNet-v2 [48] as
the image classification services, the widely-deployed deep
learning models, YOLOv3-Tiny [49] and RetinaNet [50], as
the object detection services, and the widely-deployed deep
learning model, DeepSpeech [51], as the speech recognition
service. The evaluation results are reported in Table V. We can
conclude that DVFO consistently outperforms AppealNet and
DRLDO in terms of end-to-end latency, energy consumption,
and accuracy loss, respectively. To be more specific, DVFO
reduces the average end-to-end latency by 49.7% and 36.2% on
Jetson Nano, compared with AppealNet and DRLDO, respec-
tively, and the performance improvement remains consistent
across the other three edge devices with high TOPS metric
(39.4%∼55.2% and 27.2%∼36.2% respectively). For energy
consumption, compared to AppealNet and DRLDO, DVFO
achieves energy-saving of up to 42.6% and 53% for Jetson
Nano on average, respectively. Since the energy efficiency of
other edge devices (i.e., TX2, Orin NX, and AGX Orin) is lower
than that of Jetson Nano, the energy-saving is conservative, but
still better than the baseline (16.9%∼31.3%). As mentioned in
Section VI-F, benefit from the efficient fusion method based
on weighted summation, the average accuracy loss of DVFO
on different datasets and heterogeneous edge devices remains
within 1%, which is much lower than that of AppealNet and
DRLDO (2.44× ∼ 5.4×). Overall, DVFO can seamlessly adapt
to heterogeneous edge devices and various widely-deployed
DNN models, and thus it has flexible scalability.

VII. RELATED WORK

A. Learning-Based DVFS

Prior work [13], [15], [17], [18], [20], [52], [53], [54], [55] has
proposed a series of deep reinforcement learning-based DVFS
techniques to reduce energy consumption. For instance, DRL
quality optimizer [13] combines deep reinforcement learning-
based DVFS technology with LSTM-based selectors to re-
duce end-to-end latency and improve quality of service (QoS).
QL-HDS [18] combines Q-learning with stacked auto-encoder,
and proposes a hybrid DVFS energy-saving scheduling scheme
based on Q-learning. DQL-EES [53] and Double-Q gover-
nor [54] leverage double-Q learning-based DVFS technology
that dynamically scale computing frequency to achieve efficient
energy-saving. Hybrid DVFS [52] considers heterogeneous
workloads, dynamic relaxation and power constraints, which
utilizes reinforcement learning-based hybrid DVFS technology
to achieve energy-saving. CARTAD [17] leverages reinforce-
ment learning-based task scheduling and DVFS to jointly opti-
mize end-to-end latency and temperature on multi-core CPUs
systems. Ring-DVFS [55] proposes an enhanced reinforcement
learning-based DVFS technique to reduce power consumption
on multi-core CPU systems.

Most related to our work is DRLDO [15], a data offloading
scheme that combines DRL and DVFS to reduce the energy
consumption of IoT devices. However, the above-mentioned
DRL-based DVFS approaches including [15] only optimize the
CPU frequency of edge devices, ignoring the impact of GPU
and memory frequencies on energy consumption. Moreover,
DRLDO [15] offloads uncompressed raw data to cloud servers,

Authorized licensed use limited to: Harbin Institute of Technology. Downloaded on September 11,2024 at 03:58:03 UTC from IEEE Xplore. Restrictions apply.

ZHANG et al.: DVFO: LEARNING-BASED DVFS FOR ENERGY-EFFICIENT EDGE-CLOUD COLLABORATIVE INFERENCE 9057

causing system instability and bandwidth bottlenecks. In this
work, we introduce DVFS into edge-cloud collaborative archi-
tecture, i.e., using DVFS for DNN feature map offloading to
further improve the energy-saving effect of edge devices. In
addition, we utilize the attention mechanism to efficiently com-
press the original DNN feature map, reducing the transmission
delay of compressed DNN feature map to be offloaded while
maintaining accuracy.

B. Edge-Cloud Collaborative DNN Model Inference

Since edge devices are usually resource-constrained, it is
necessary to utilize cloud servers with abundant computing
resources for edge-cloud collaborative inference to reduce end-
to-end latency. Existing studies [11], [56] have been revealed
that transmission of DNN feature map is a major network
bottleneck for offloading. Therefore, prior work [11], [12],
[14], [56] has proposed various collaborative inference methods
that combine a series of compression techniques to reduce the
transmission of DNN feature map. For instance, DeepCOD [14]
and Starfish [56] designs efficient encoders and decoders based
on compressed sensing theory and application-specific codecs,
respectively, and then offloads the compressed data from the
local to the edge server, thereby effectively reducing end-to-end
delays. AgileNN [12] uses attention mechanism to identify the
importance of DNN feature map, and it reduces the end-to-end
latency by offloading a large number of compressed less im-
portant features to remote. SPINN [11] achieves the progressive
inference for edge-cloud collaboration by placing multiple early-
exit points in the neural network, which not only considers the
resource-constrained local devices, but also takes into account
the instability and communication costs of the cloud.

In addition, [57] proposes a pipelined scheme for collabora-
tive inference on a heterogeneous IoT edge cluster to reduce
redundant calculation and communication overhead in order
to maximize the throughput. DCCI [58] and AppealNet [19]
perform binary offloading (local inference only or full offloading
to the cloud servers) on the input data based on the hard-case
discriminator. ELF [59] splits a single video frame and offloads
the segmented local video frames to multiple edge servers,
which accelerates parallel inference for high resolution vision
models. CNNPC [60] jointly optimizes model partitioning and
compression, which significantly speeds up collaborative infer-
ence with the end-edge-cloud computing paradigm. However,
these approaches do not incorporate optimization of hardware
frequency for better energy saving. Our approach combines the
advantages of DVFS and feature map offloading.

C. On-Device DNN Model Inference

The MLPerf Mobile Inference Benchmark [61] reveals im-
pressive progress in on-device inference [62], benefiting from
the synergistic impact of increasing performance at the edge,
highly flexible lightweight models, and efficient deep learn-
ing frameworks. We highlight that previous work [62], [63],
[64], [65], [66], [67], [68], [69] can also achieve effective
energy saving and low end-to-end latency only through effi-
cient on-device inference, except for edge-cloud collaborative

inference. Mistify [63] and NeuralUCB [64] studied the auto-
mated customization for on-device DL inference, which reduce
DNN manual porting time and improve quality of experience
(QoE) by automatically porting cloud-based compressed models
to edge devices and online learning algorithms, respectively.
MEmCom [65] significantly improves the on-device inference
performance of recommendation models by using a model
compression technique based on multi-embedding compression.
DeiT-Tiny [66] is the first empirical study on efficient on-device
inference for visual transformer, reducing the end-to-end latency
by removing redundant attention heads and forward neural
network layers. eNODE [67] achieves efficient on-device infer-
ence for neural differential equations (NODEs) by architecture-
algorithm co-design. BlastNet [68] leverages dual-block based
fine-grained dynamic scheduling to enable on-device real-time
multi-model inference across CPU-GPU. Similarly, POS [69]
leverages operator granularity-oriented computational graph
optimization with reinforcement learning to accelerate multi-
model real-time on-device inference. AsyMo [62] leverages
model partitioning based on cost-model and asymmetric task
scheduling for mobile CPUs to enable energy-efficient on-device
inference.

As privacy security for on-device inference becomes increas-
ingly challenging, ShadowNet [70] leverages a trusted execution
environment (TEE) to preserve model privacy while ensuring
efficient inference. Note that on-device inference is orthogonal
to our work, which can further reduce end-to-end latency and
energy consumption.

VIII. CONCLUSION

In this work, we propose DVFO, an DVFS enabled
learning-based energy-efficient collaborative inference frame-
work. DVFO co-optimizes the CPU, GPU, and memory fre-
quencies of edge devices, as well as the proportion of feature
map to be offloaded to cloud servers. We apply concurrent
control mechanism named thinking-while-moving in learning-
based optimization, and propose an importance-based feature
map offloading scheme by leveraging a spatial-channel atten-
tion mechanism, to accelerate convergence and alleviate edge-
cloud network bottlenecks, respectively. Extensive evaluations
on widely-deployed DNN models with three domain-specific on
five heterogeneous edge devices show that DVFO significantly
outperforms existing offloading schemes in terms of energy
consumption and end-to-end latency, while maintaining high
accuracy.

REFERENCES

[1] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet Things J., vol. 3, no. 5, pp. 637–646,
Oct. 2016.

[2] J. Chen and X. Ran, “Deep learning with edge computing: A review,”
Proc. IEEE, vol. 107, no. 8, pp. 1655–1674, Aug. 2019.

[3] N. Zeng, P. Wu, Z. Wang, H. Li, W. Liu, and X. Liu, “A small-sized object
detection oriented multi-scale feature fusion approach with application
to defect detection,” IEEE Trans. Instrum. Meas., vol. 71, pp. 1–14,
2022.

[4] M. Kim, A. K. Jain, and X. Liu, “AdaFace: Quality adaptive margin for face
recognition,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
2022, pp. 18750–18759.

Authorized licensed use limited to: Harbin Institute of Technology. Downloaded on September 11,2024 at 03:58:03 UTC from IEEE Xplore. Restrictions apply.

9058 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 10, OCTOBER 2024

[5] Z. Liu, G. Lan, J. Stojkovic, Y. Zhang, C. Joe-Wong, and M. Gorlatova,
“CollabAR: Edge-assisted collaborative image recognition for mobile
augmented reality,” in Proc. IEEE/ACM 19th Int. Conf. Inf. Process. Sensor
Netw., 2020, pp. 301–312.

[6] W. Jang, H. Jeong, K. Kang, N. Dutt, and J.-C. Kim, “R-TOD: Real-time
object detector with minimized end-to-end delay for autonomous driving,”
in Proc. IEEE Real-Time Syst. Symp., 2020, pp. 191–204.

[7] M. Han, H. Zhang, R. Chen, and H. Chen, “Microsecond-scale preemption
for concurrent GPU-accelerated DNN inferences,” in Proc. 16th USENIX
Symp. Operating Syst. Des. Implementation, 2022, pp. 539–558.

[8] A. Krizhevsky et al., “Learning multiple layers of features from tiny
images,” University of Toronto, Toronto, Ontario, Canada, Tech. Rep.,
2009.

[9] Q. Wang, X. Mei, H. Liu, Y.-W. Leung, Z. Li, and X. Chu, “Energy-aware
non-preemptive task scheduling with deadline constraint in DVFS-enabled
heterogeneous clusters,” IEEE Trans. Parallel Distrib. Syst., vol. 33, no. 12,
pp. 4083–4099, Dec. 2022.

[10] S. M. Nabavinejad, S. Reda, and M. Ebrahimi, “Coordinated batching and
DVFS for DNN inference on GPU accelerators,” IEEE Trans. Parallel
Distrib. Syst., vol. 33, no. 10, pp. 2496–2508, Oct. 2022.

[11] S. Laskaridis, S. I. Venieris, M. Almeida, I. Leontiadis, and N. D. Lane,
“SPINN: Synergistic progressive inference of neural networks over device
and cloud,” in Proc. 26th Annu. Int. Conf. Mobile Comput. Netw., 2020,
pp. 1–15.

[12] K. Huang and W. Gao, “Real-time neural network inference on extremely
weak devices: Agile offloading with explainable AI,” in Proc. 28th Annu.
Int. Conf. Mobile Comput. Netw., 2022, pp. 200–213.

[13] F. Chen, H. Yu, W. Jiang, and Y. Ha, “Quality optimization of adaptive
applications via deep reinforcement learning in energy harvesting edge
devices,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 41,
no. 11, pp. 4873–4886, Nov. 2022.

[14] S. Yao et al., “Deep compressive offloading: Speeding up neural network
inference by trading edge computation for network latency,” in Proc. 18th
Conf. Embedded Netw. Sensor Syst., 2020, pp. 476–488.

[15] S. K. Panda, M. Lin, and T. Zhou, “Energy efficient computation offload-
ing with DVFS using deep reinforcement learning for time-critical IoT
applications in edge computing,” IEEE Internet Things J., vol. 10, no. 8,
pp. 6611–6621, Apr. 2023.

[16] J. Dodge et al., “Measuring the carbon intensity of AI in cloud in-
stances,” in Proc. ACM Conf. Fairness Accountability Transparency, 2022,
pp. 1877–1894.

[17] D. Liu, S.-G. Yang, Z. He, M. Zhao, and W. Liu, “CARTAD: Compiler-
assisted reinforcement learning for thermal-aware task scheduling and
DVFS on multicores,” IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst., vol. 41, no. 6, pp. 1813–1826, Jun. 2022.

[18] Q. Zhang, M. Lin, L. T. Yang, Z. Chen, and P. Li, “Energy-efficient
scheduling for real-time systems based on deep q-learning model,” IEEE
Trans. Sustain. Comput., vol. 4, no. 1, pp. 132–141, First Quarter 2019.

[19] M. Li, Y. Li, Y. Tian, L. Jiang, and Q. Xu, “AppealNet: An efficient and
highly-accurate edge/cloud collaborative architecture for DNN inference,”
in Proc. IEEE/ACM 58th Des. Automat. Conf., 2021, pp. 409–414.

[20] C. Lin, K. Wang, Z. Li, and Y. Pu, “A workload-aware DVFS robust to
concurrent tasks for mobile devices,” in Proc. 29th Annu. Int. Conf. Mobile
Comput. Netw., 2023, pp. 1–16.

[21] O. M. Andrychowicz et al., “Learning dexterous in-hand manipulation,”
Int. J. Robot. Res., vol. 39, no. 1, pp. 3–20, 2020.

[22] T. Xiao et al., “Thinking while moving: Deep reinforcement learning
with concurrent control,” in Proc. Int. Conf. Learn. Representations, 2019,
pp. 1–17.

[23] S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon, “CBAM: Convolutional block
attention module,” in Proc. Eur. Conf. Comput. Vis., 2018, pp. 3–19.

[24] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification
with deep convolutional neural networks,” Commun. ACM, vol. 60, no. 6,
pp. 84–90, 2017.

[25] M. Tan and Q. Le, “EfficientNet: Rethinking model scaling for convolu-
tional neural networks,” in Proc. Int. Conf. Mach. Learn., PMLR, 2019,
pp. 6105–6114.

[26] A. Dosovitskiy et al., “An image is worth 16x16 words: Transformers for
image recognition at scale,” 2020, arXiv:2010.11929.

[27] S. Williams, A. Waterman, and D. Patterson, “Roofline: An insightful
visual performance model for multicore architectures,” Commun. ACM,
vol. 52, no. 4, pp. 65–76, 2009.

[28] J. You, J.-W. Chung, and M. Chowdhury, “Zeus: Understanding and
optimizing GPU energy consumption of DNN training,” in Proc. 20th
USENIX Symp. Netw. Syst. Des. Implementation, 2023, pp. 119–139.

[29] U. Saleem, Y. Liu, S. Jangsher, Y. Li, and T. Jiang, “Mobility-aware
joint task scheduling and resource allocation for cooperative mobile edge
computing,” IEEE Trans. Wireless Commun., vol. 20, no. 1, pp. 360–374,
Jan. 2021.

[30] X. Li et al., “Predictive exit: Prediction of fine-grained early exits for
computation-and energy-efficient inference,” in Proc. AAAI Conf. Artif.
Intell., 2023, pp. 8657–8665.

[31] S. Kim, K. Bin, S. Ha, K. Lee, and S. Chong, “zTT: Learning-based DVFS
with zero thermal throttling for mobile devices,” in Proc. 19th Annu. Int.
Conf. Mobile Syst. Appl. Serv., 2021, pp. 41–53.

[32] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Cambridge, MA, USA: MIT Press, 2018.

[33] V. Mnih et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[34] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770–778.

[35] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba, “Learning
deep features for discriminative localization,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2016, pp. 2921–2929.

[36] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and
D. Batra, “Grad-CAM: Visual explanations from deep networks via
gradient-based localization,” in Proc. IEEE Int. Conf. Comput. Vis., 2017,
pp. 618–626.

[37] Y. Song, T. Wang, P. Cai, S. K. Mondal, and J. P. Sahoo, “A
comprehensive survey of few-shot learning: Evolution, applications,
challenges, and opportunities,” ACM Comput. Surv., vol. 55, 2023,
Art. no. 271.

[38] F. Zhuang et al., “A comprehensive survey on transfer learning,” Proc.
IEEE, vol. 109, no. 1, pp. 43–76, Jan. 2021.

[39] L. Bottou, “Stochastic gradient descent tricks,” in Neural Networks:
Tricks of the Trade: Second Edition. Berlin, Germany: Springer, 2012,
pp. 421–436.

[40] jetson-stats, Accessed: Nov. 26, 2023. [Online]. Available: https://github.
com/rbonghi/jetson_stats

[41] J. Duan, Y. Guan, S. E. Li, Y. Ren, Q. Sun, and B. Cheng, “Distributional
soft actor-critic: Off-policy reinforcement learning for addressing value
estimation errors,” IEEE Trans. Neural Netw. Learn. Syst., vol. 33, no. 11,
pp. 6584–6598, Nov. 2022.

[42] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a
stochastic actor,” in Proc. Int. Conf. Mach. Learn., PMLR, 2018,
pp. 1861–1870.

[43] J. Duan, W. Wang, L. Xiao, J. Gao, and S. E. Li, “DSAC-T: Distributional
soft actor-critic with three refinements,” 2023, arXiv:2310.05858.

[44] T. P. Lillicrap et al., “Continuous control with deep reinforcement learn-
ing,” 2015, arXiv:1509.02971.

[45] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal
policy optimization algorithms,” 2017, arXiv:1707.06347.

[46] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust region
policy optimization,” in Proc. Int. Conf. Mach. Learn., PMLR, 2015,
pp. 1889–1897.

[47] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2016, pp. 2818–2826.

[48] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, “Mo-
bileNetV2: Inverted residuals and linear bottlenecks,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2018, pp. 4510–4520.

[49] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once:
Unified, real-time object detection,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2016, pp. 779–788.

[50] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for
dense object detection,” in Proc. IEEE Int. Conf. Comput. Vis., 2017,
pp. 2980–2988.

[51] A. Hannun et al., “Deep speech: Scaling up end-to-end speech recogni-
tion,” 2014, arXiv:1412.5567.

[52] F. M. M. ul Islam and M. Lin, “Hybrid DVFS scheduling for real-time
systems based on reinforcement learning,” IEEE Syst. J., vol. 11, no. 2,
pp. 931–940, Jun. 2017.

[53] Q. Zhang, M. Lin, L. T. Yang, Z. Chen, S. U. Khan, and P. Li, “A double
deep q-learning model for energy-efficient edge scheduling,” IEEE Trans.
Serv. Comput., vol. 12, no. 5, pp. 739–749, Sep./Oct. 2019.

[54] H. Huang, M. Lin, L. T. Yang, and Q. Zhang, “Autonomous power
management with double-q reinforcement learning method,” IEEE Trans.
Ind. Informat., vol. 16, no. 3, pp. 1938–1946, Mar. 2020.

Authorized licensed use limited to: Harbin Institute of Technology. Downloaded on September 11,2024 at 03:58:03 UTC from IEEE Xplore. Restrictions apply.

https://github.com/rbonghi/jetson_stats
https://github.com/rbonghi/jetson_stats

ZHANG et al.: DVFO: LEARNING-BASED DVFS FOR ENERGY-EFFICIENT EDGE-CLOUD COLLABORATIVE INFERENCE 9059

[55] A. Yeganeh-Khaksar, M. Ansari, S. Safari, S. Yari-Karin, and A. Ejlali,
“Ring-DVFS: Reliability-aware reinforcement learning-based DVFS for
real-time embedded systems,” IEEE Embedded Syst. Lett., vol. 13, no. 3,
pp. 146–149, Sep. 2021.

[56] P. Hu, J. Im, Z. Asgar, and S. Katti, “Starfish: Resilient image compression
for AIoT cameras,” in Proc. 18th Conf. Embedded Netw. Sensor Syst., 2020,
pp. 395–408.

[57] X. Yang, Q. Qi, J. Wang, S. Guo, and J. Liao, “Towards efficient inference:
Adaptively cooperate in heterogeneous IoT edge cluster,” in Proc. IEEE
41st Int. Conf. Distrib. Comput. Syst., 2021, pp. 12–23.

[58] Y. Hu, Z. Li, Y. Chen, Y. Cheng, Z. Cao, and J. Liu, “Content-aware
adaptive device-cloud collaborative inference for object detection,” IEEE
Internet Things J., vol. 10, no. 21, pp. 19087–19101, Nov. 2023.

[59] W. Zhang et al., “ELF: Accelerate high-resolution mobile deep vision with
content-aware parallel offloading,” in Proc. 27th Annu. Int. Conf. Mobile
Comput. Netw., 2021, pp. 201–214.

[60] S. Yang, Z. Zhang, C. Zhao, X. Song, S. Guo, and H. Li, “CNNPC:
End-edge-cloud collaborative CNN inference with joint model partition
and compression,” IEEE Trans. Parallel Distrib. Syst., vol. 33, no. 12,
pp. 4039–4056, Dec. 2022.

[61] V. Janapa Reddi et al., “MLPerf mobile inference benchmark: An industry-
standard open-source machine learning benchmark for on-device AI,”
Proc. Mach. Learn. Syst., vol. 4, pp. 352–369, 2022.

[62] M. Wang, S. Ding, T. Cao, Y. Liu, and F. Xu, “AsyMo: Scalable and
efficient deep-learning inference on asymmetric mobile CPUs,” in Proc.
27th Annu. Int. Conf. Mobile Comput. Netw., 2021, pp. 215–228.

[63] P. Guo, B. Hu, and W. Hu, “Mistify: Automating DNN model porting for
on-device inference at the edge,” in Proc. 18th USENIX Symp. Netw. Syst.
Des. Implementation, 2021, pp. 705–719.

[64] Y. Bai, L. Chen, S. Ren, and J. Xu, “Automated customization of on-device
inference for quality-of-experience enhancement,” IEEE Trans. Comput.,
vol. 72, no. 5, pp. 1329–1342, May 2023.

[65] N. Pansare et al., “Learning compressed embeddings for on-device infer-
ence,” in Proc. Mach. Learn. Syst., vol. 4, pp. 382–397, 2022.

[66] X. Wang, L. L. Zhang, Y. Wang, and M. Yang, “Towards efficient vision
transformer inference: A first study of transformers on mobile devices,” in
Proc. 23rd Annu. Int. Workshop Mobile Comput. Syst. Appl., 2022, pp. 1–7.

[67] J. Zhu, Y. Tao, and Z. Zhang, “eNODE: Energy-efficient and low-latency
edge inference and training of neural odes,” in Proc. IEEE Int. Symp. High-
Perform. Comput. Archit., 2023, pp. 802–813.

[68] N. Ling, X. Huang, Z. Zhao, N. Guan, Z. Yan, and G. Xing, “BlastNet:
Exploiting duo-blocks for cross-processor real-time DNN inference,” in
Proc. 20th ACM Conf. Embedded Netw. Sensor Syst., 2022, pp. 91–105.

[69] Z. Zhang, H. Li, Y. Zhao, C. Lin, and J. Liu, “POS: An operator scheduling
framework for multi-model inference on edge intelligent computing,” in
Proc. 22nd Int. Conf. Inf. Process. Sensor Netw., 2023, pp. 40–52.

[70] Z. Sun, R. Sun, C. Liu, A. R. Chowdhury, L. Lu, and S. Jha, “Shad-
owNet: A secure and efficient on-device model inference system for
convolutional neural networks,” in Proc. IEEE Symp. Secur. Privacy, 2022,
pp. 1489–1505.

Ziyang Zhang (Student Member, IEEE) received the
MS degree from the School of Electronic Information
and Optical Engineering, Nankai University, Tianjin,
China, in 2020. He is currently working toward the
PhD degree with the School of Computer Science and
Technology, Harbin Institute of Technology (HIT),
Harbin, China. His research interests include edge
computing, machine learning system, and deep learn-
ing.

Yang Zhao (Senior Member, IEEE) received the
BS degree in electrical engineering from Shandong
University, in 2003, the MS degree in electrical en-
gineering from the Beijing University of Aeronautics
and Astronautics, in 2006, and the PhD degree in elec-
trical and computer engineering from the University
of Utah, in 2012. He was a lead research engineer
with GE Global Research between 2013 and 2021.
Since 2021, he has been with the Harbin Institute
of Technology, Shenzhen, where he is a research
professor with the International Research Institute

for Artificial Intelligence. His research interests include wireless sensing, edge
computing, and cyber physical systems.

Huan Li (Senior Member, IEEE) received the PhD
degree in computer science from the University of
Massachusetts at Amherst, in 2006. Her current re-
search interests include AIoT, edge intelligence, dis-
tributed real-time systems, and data science. She has
served as program committee member for numer-
ous international conferences including IEEE RTAS,
ICDCS, RTCSA, etc.

Changyao Lin (Student Member, IEEE) received the
BS and MS degrees from the School of Computer Sci-
ence and Technology, Harbin Institute of Technology
(HIT), Harbin, China, in 2020 and 2022, respectively.
He is currently working toward the PhD degree with
HIT. His research interests include edge computing,
distributed system, and deep learning.

Jie Liu (Fellow, IEEE) is a chair professor with
the Harbin Institute of Technology Shenzhen (HIT
Shenzhen), China and the dean of its AI Research
Institute. Before joining HIT, he spent 18 years with
Xerox PARC and Microsoft. He was a principal re-
search manager with Microsoft Research, Redmond
and a partner of the company. His research inter-
ests are cyber-physical systems, AI for IoT, and
energy-efficient computing. He received IEEE TC-
CPS Distinguished Leadership Award and 7 Best
Paper Awards from top conferences. He is an ACM

Distinguished Scientist, and founding chair of ACM SIGBED China.

Authorized licensed use limited to: Harbin Institute of Technology. Downloaded on September 11,2024 at 03:58:03 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

