E3: Early Exiting with Explainable Al for Real-Time and Accurate
DNN Inference in Edge-Cloud Systems

Changyao Lin
lincy@stu.hit.edu.cn
Harbin Institute of Technology
Harbin, China

Ziyang Zhang
ziyang.zhang@polimi.it
Politecnico di Milano
Milano, Italy

ABSTRACT

Edge intelligence applications frequently generate deep learning
inference tasks with varying Service Level Objectives (SLO, such as
accuracy and real-time requirements). For such tasks, recent pro-
gressive inference modes support early exit from different branches
to satisfy inference requirements. However, existing edge-cloud
progressive neural architectures cannot simultaneously achieve
high accuracy and real-time performance for different data features.
Therefore, we utilize explainable Al technique to construct and train
a novel progressive neural architecture E3. E3 can progressively
extract the most important features for inference, ensuring higher
accuracy at early-exit points. While the less important features in
the later stage are highly compressible, thereby reducing edge-cloud
transmission overhead. Furthermore, E3 cooperates with online
execution control to launch tasks and decide the exit point for
each task, ensuring resource utilization and real-time performance,
and adapting to bandwidths and deadlines. Experimental results
on various edge-cloud platforms, datasets, and reference models
demonstrate that E3 is more lightweight, efficient, energy-saving,
and incurs almost no additional runtime overhead compared to
traditional architectures. Under stringent deadlines, the average
accuracy of tasks increases by > 50%, and the deadline satisfaction
rate approaches 100%.

CCS CONCEPTS

« Computer systems organization — Real-time system ar-
chitecture; - Computing methodologies — Neural networks;
Computer vision tasks.

KEYWORDS

Edge Intelligence, Progressive Inference, Explainable Al

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SenSys °25, May 6-9, 2025, Irvine, CA, USA

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1479-5/2025/05

https://doi.org/10.1145/3715014.3722076

Zhenming Chen
chenzm@cscec.com
China Construction Steel Structure Engineering Co., LTD
Shenzhen, China

Jie Liu
jieliu@hit.edu.cn
Harbin Institute of Technology
Shenzhen, China

ACM Reference Format:

Changyao Lin, Zhenming Chen, Ziyang Zhang, and Jie Liu. 2025. E3: Early
Exiting with Explainable Al for Real-Time and Accurate DNN Inference in
Edge-Cloud Systems. In The 23rd ACM Conference on Embedded Networked
Sensor Systems (SenSys "25), May 6-9, 2025, Irvine, CA, USA. ACM, New York,
NY, USA, 13 pages. https://doi.org/10.1145/3715014.3722076

1 INTRODUCTION

With the development of edge computing [40] and hardware [28,
30, 31], an increasing number of intelligent applications, such as
autonomous driving [44], virtual reality [45], and smart manufac-
turing [55], are being deployed at the edge to provide users with
more real-time services [57]. These applications generate different
deep learning inference tasks (data), which usually vary in terms of
difficulty, resource overhead, and service level objective (SLO, such
as real-time and accuracy requirements) [52].

Existing edge-cloud collaborative progressive inference architec-
tures [23, 24, 54] can adjust the exit point of inference according
to different SLOs, striving to satisfy various accuracy and latency
requirements. However, their accuracy at early-exit points is not
high enough. Especially in some difficult scenarios, they require
a very late exit or even frequent offloading to the cloud to meet
accuracy requirements, which sacrifices real-time performance, or
force an early exit to pursue real-time performance, resulting in
low accuracy. Current work still lacks an efficient architecture or
training framework that can ensure higher accuracy at early-exit
points for different data features, thereby meeting both real-time
and high-accuracy requirements for different tasks. In addition to
introducing new offline training methods, it is also necessary to
cooperate with online execution control to ensure that different
tasks can exit from appropriate branches, so as to release resource
occupation, and save energy consumption at the edge.

To compensate for the shortcomings of existing architectures,
we propose a novel edge-cloud collaborative progressive inference
framework E3, which combines eXplainable AI (XAI) techniques
[16, 39, 41] with early-exit techniques [43] to construct an efficient
multi-branch neural network (NN). We shift the rationale of early-
exit network construction from fixed to agile and data-centric. The
goal of our design is to progressively extract the most important
features for inference so that high accuracy can be achieved at
early-exit points. The basic idea is to incorporate the knowledge
about the heterogeneity of different input data into training so that

https://orcid.org/0000-0001-6805-2649
https://orcid.org/0009-0003-7046-4644
https://orcid.org/0000-0003-2539-8257
https://orcid.org/0000-0001-6209-6886
https://doi.org/10.1145/3715014.3722076
https://doi.org/10.1145/3715014.3722076

SenSys ’25, May 6-9, 2025, Irvine, CA, USA

the computation required to extract important features can be mi-
grated from online inference to offline training. More specifically,
we interpret such heterogeneity as the contribution or importance
of different data features for NN inference, and employ XAI to ex-
plicitly evaluate and differentiate the importance during training.
In this way, the most important features can be assigned to the
early branches in the inference phase, making the early results more
accurate. Besides, the later branches can further infer on the less im-
portant features and combine the results of early branches, thereby
making the inference accuracy as high as possible when exiting,
i.e., satisfying real-time and accuracy requirements simultaneously.

However, the major challenge of above process is that the data
features in different channels may have similar importance for NN
inference, and they may all be either important or unimportant. In
this case, the most important features are difficult to concentrate for
extraction, leading to a decrease in accuracy. This necessitates the
execution of more later branches to extract the important features
to improve accuracy, thus causing additional latency. To address
this challenge, E3 intentionally manipulates the importance of data
features through non-linear transformation in the high-dimensional
feature space to ensure that such importance distribution is skewed
on different data. In other words, we enforce that after transfor-
mation, only the features in the specific k channels contribute
significantly to the branch NN inference, so that these important
features can be extracted and inferred earlier. We achieve such a
skewness manipulation by a highly lightweight feature extractor,
and jointly train the feature extractor and branch NNs in each E3
block to ensure accuracy. Since only a few of the most important
features are extracted for each branch, a lightweight branch NN
can achieve high accuracy, facilitating efficient deployment and ex-
ecution at the edge. E3 progressively improves inference accuracy
by stacking multiple E3 blocks in the edge-cloud system, which
is more efficient and lightweight than just inserting branches on
the original model in traditional methods [23, 24, 43, 54]. Moreover,
E3 can highly compress features that are unimportant in the later
block, reducing edge-cloud transmission overhead while hardly
affecting end-to-end accuracy.

In addition to improving early-exit accuracy by training a novel
progressive architecture, different real-time requirements as well as
resource and bandwidth fluctuations at runtime also provide sched-
uling opportunities for online execution control. E3 maintains a
priority-driven queue and a task launcher at the edge for concur-
rency control, thereby improving resource utilization and allevi-
ating contention. When executing tasks concurrently, E3 profiles
the execution time of each block and the edge-cloud transmission
overhead, so as to control the exit point for each task to ensure
that it does not exceed the deadline. The high accuracy in the early
stage also enables the tasks to exit earlier to free up resources.

In summary, the main contributions of this paper are as follows:

e We propose E3, to our knowledge, which is the first to ap-
ply XAI technique to construct efficient progressive neural
architecture with high accuracy at early-exit points.

o E3 cooperates with stable online execution control to launch
inference tasks and decide their exit point, ensuring resource
utilization and real-time performance.

Lin et al.

e We implement E3 on various edge-cloud platforms. Com-
pared to traditional architectures, E3 is more lightweight,
efficient, energy-saving, and incurs almost no additional
runtime overhead. Under stringent deadlines, the average
accuracy of tasks increases by > 50%, and the deadline satis-
faction rate approaches 100%.

2 RELATED WORK

Optimization for Deep Neural Network (DNN) Inference at the
Edge. The constraints of computing and storage resources at the
edge pose challenges in satisfying diverse inference requirements.
To achieve SLOs and enhance Quality of Service (QoS), several typ-
ical techniques have been developed recently. Model compression
[5, 12] and knowledge distillation [13, 46] are some offline opti-
mization techniques aimed at reducing the number of parameters
and computational load for edge DNNs, accelerating execution,
and striving to ensure accuracy. However, they lack mechanisms
for dynamic scheduling according to different tasks and fluctuat-
ing resources, leading to low efficiency at runtime. Progressive
inference [43, 52, 54] inserts multiple early-exit branches into the
original model, allowing inference instances with different SLOs to
exit from different branches at an early stage, thus reducing both
inference latency and resource occupation. The construction and
training for early-exit models are challenging, and they also need to
be combined with online scheduling to control when the task exits.
Model partition [19, 56] divides a large model into several parts,
each deployed on a different device for distributed collaborative
inference, effectively addressing the challenge of deploying a large
model on resource-constrained devices. However, the distributed
inference usually utilizes some data compression techniques [1, 6]
to reduce the transmission overhead between devices. Inappropri-
ate data compression may be accompanied by significant accuracy
loss. In addition to the above optimization at the edge, edge-cloud
collaborative inference [16, 48, 51] is also a typical mode. Edge de-
vices offload part of computational load to the cloud through certain
strategies, so as to save edge resources. However, the long-distance
transmission and irregular bandwidth fluctuations exacerbate end-
to-end latency, which introduces a huge optimization cost.
Progressive Inference in Edge-Cloud Systems. Recent work
has explored the integration of progressive inference (early-exit) ar-
chitecture [43] with edge-cloud model partition [19] to fully utilize
the advantages of both. Edgent [24] integrates workload offloading
and progressive neural architecture. However, it only allows a sin-
gle early-exit branch for all inputs, which cannot fully exploit the
benefits of progressive inference. SPINN [23] and EdgeML [54] also
adopt such combination approach and consider different early-exit
branches for different inputs to allow flexible inference and com-
putation offloading. SPINN uses the same early-exit threshold for
all branches, while EdgeML assigns an independent threshold to
each branch, resulting in a significant performance improvement.
SPINN adopts a multi-objective optimization algorithm to generate
execution strategies, which may be inefficient due to the huge solu-
tion space caused by continuous thresholds and partition points.
EdgeML optimizes the execution strategy dynamically through
a reinforcement-learning-based framework, which can not only
adapt more flexibly to the dynamic environment between edge and

E3: Early Exiting with Explainable Al for Real-Time and Accurate DNN Inference in Edge-Cloud Systems

cloud but also accommodate new platforms through knowledge
transfer. However, the learning-based method is usually unstable
and costly to train in practice. In addition, these progressive archi-
tectures simply insert branch NNs containing convolutional and
fully-connected layers into the original model, then retrain it (the
unified loss function is the weighted sum of each branch’s loss) [43].
This incurs a lot of additional runtime overhead, and leads to two
outcomes for difficult instances: late exit to ensure accuracy at the
expense of real-time performance, or early exit to satisfy real-time
requirements at the expense of accuracy. There still lacks an effi-
cient architecture and training method to encourage high accuracy
at early-exit points for any data features, so as to simultaneously
ensure real-time performance and accuracy.

Al Attribution. Traditional attribution methods apply zero
masks [36] or random permutation [10] to specific input variables,
and then empirically evaluate the importance of inputs via the in-
duced output variation. Attention-based methods [47, 53] embed
a learnable weighting layer into the original NN to evaluate fea-
ture importance. However, these techniques are sensitive to the
NN structure and cannot ensure accurate evaluation. Recent XAI
tools [39, 41] are more accurate and robust. They derive impor-
tance using gradients of NN outputs with respect to the inputs,
which is fine-grained and can clearly show how much each input
feature contributes to the output in percentage terms. Such XAI
techniques have been widely used for analyzing data features and
understanding the NN’s behavior, but existing work rarely explores
their application in improving NN inference efficiency. The way of
evaluating feature importance with XAI techniques guides us to
design more efficient progressive NN that can extract important
features earlier to promote both high accuracy and early exit.

3 MOTIVATION
3.1 Deficiencies of Existing Architectures

According to the characteristics of Convolutional Neural Network
(CNN) [22], the deeper the layer, the larger the receptive field,
and the more abstract (high-level) the features. The typical im-
age classification task requires features to contain more high-level
information for fine classification. In order to perform global clas-
sification, it also requires NN to have the ability to perceive the
entire image, which heavily relies on the inference capability of
deep CNNGs. Therefore, although existing progressive architectures
[23, 24, 43, 54] achieve early exit by inserting multiple branch NNs
into the original model, the branch NN at shallow needs to be
configured with more layers to ensure accuracy, which cannot sig-
nificantly reduce FLOPs, contradicting the original design intention
of progressive architectures.

In addition, existing progressive neural architectures simply in-
sert branch NNs consisting of convolutional and fully-connected
layers into the original model, then retrain it, leading to two out-
comes for difficult instances: late exit to ensure accuracy at the
expense of real-time performance, or early exit to satisfy real-time
requirements at the expense of accuracy. To validate this, we apply
the advanced edge-cloud progressive neural architecture EdgeML
[54] to EfficientNetV2 [42] pre-trained on ImageNet [37], insert
three branches (i.e., four exit points in total including the exit point

SenSys 25, May 6-9, 2025, Irvine, CA, USA

‘5| *EdgeML-w/o-Control +EdgeML]| [Avg. Satisfaction Rate @Avg. Accuracy|
x <100 - — 1005
208 loud < g0 |- -Acc of EfficientNetV2: 79.2% g <
Wo's S 60 60 §
204 g 40 7| 40 S
205 Cloud £ 20 = 20 8
ER £ 0 0 <
E 2 3 @ EdgeML- EdgeML

O Exit Point w/o-Control

Figure 1: Early-exit CDF of Figure 2: The average task

EdgeML [54] without and accuracy and deadline satis-

with online execution con- faction rate of EdgeML with-

trol. out and with online execu-
tion control.

’Exit Point (Branch): 81 @2 @3 54‘

cooo
Shws

SR

ANy

DA 000004000

6 7 8 9 10 11 12 13 14 15 16
Channel Index

Non-normalized
Importance
o

N
N
w
N
[&)]

Figure 3: We utilize XAI tool [41] to explore the importance
distribution of features in each branch of EdgeML.

of original model) at equidistant points of FLOPs across the orig-
inal model layers, and retrain such a branchy model [43]. Then,
using the imgaug [18] library, we randomly add noise such as rain,
snow, fog, occlusion, strong light, blurring, etc. to the ImageNet
ILSVRC2012 test set, which is common in some scenarios like au-
tonomous driving in bad weather and welding workbench under
strong light. We input these difficult instances into the framework
for classification, with the relative deadline set to 50 ms, and test it
on an edge-cloud platform composed of an edge device NVIDIA Jet-
son Nano [32] and a cloud server equipped with NVIDIA GeForce
RTX 3080 [29]. The edge-cloud bandwidth is fixed at 10 Mbps.

Fig. 1 shows the results of EdgeML without online execution
control, where we set the confidence threshold for all exit points to
0.5, and deploy the first two branches at the edge, the other two in
the cloud. The inference can only exit when the threshold is satisfied
at a certain exit point (except for the last one), which is accuracy-
first, so these difficult instances are prone to late exit or even be
offloaded to the cloud, severely sacrificing real-time performance
and resulting in a low deadline satisfaction rate, despite the average
accuracy being close to that of the original model (Fig. 2). Fig. 1 also
shows the results of EdgeML with learning-based online execution
control, where it can dynamically decide the confidence threshold
for each exit point and the edge-cloud partition point, ensuring as
late the inference exits as possible under the premise of satisfying
the deadline requirement, which is real-time-first. Therefore, early
exit results in low accuracy for the difficult instances (Fig. 2).

3.2 Application of Explainable AI (XAI)

Recent work on eXplainable AI (XAI) evaluates feature importance
by some attribution tools. Typical XAl tool such as Integrated Gradi-
ents (IG) [41] takes multiple linear interpolations between the input
features and a naive baseline, and feeds them to a reference NN.
Then it computes the gradient of each interpolation with respect to

SenSys ’25, May 6-9, 2025, Irvine, CA, USA

the output (e.g. confidence score) of reference NN, and accumulates
the gradients to measure the importance of features.

To further explain the fundamental reason why real-time and ac-
curacy requirements cannot be satisfied simultaneously under the
existing architectures, we utilize such XAl tool to explore the impor-
tance distribution of features in each branch of EdgeML. Specifically,
we consider each branch NN and the backbone NN before it as a
reference NN, then input the same data to evaluate the importance
distribution of features in 16 channels after the input layer. As
shown in Fig. 3, in most channels, the importance of features in
the earlier branches is lower than that in the later ones, i.e., the
critical features of difficult instances are usually extracted in the
late stage, resulting in diminished early accuracy. These critical
features are difficult to highly compress, causing much edge-cloud
transmission overhead, and further diminishing real-time perfor-
mance. This prompts us to pursue a new architecture and training
method that can enhance the importance of early features, so as to
satisfy real-time performance and high accuracy simultaneously.

In reverse, this way of evaluating feature importance using XAI
tools guides us to design more efficient progressive neural architec-
ture. To achieve high accuracy for early exit, only a few of the most
important features must be extracted for inference at each early
branch. Therefore, the importance distribution must be skewed
on early features. The higher such skewness is, the fewer features
dominate the NN inference, and just lightweight branch NN are
needed to achieve high accuracy. However, according to the results
in Fig. 3, the importance skewness does not consistently exist in
all branches. This prompts us to design a new feature extractor
that intentionally manipulates and enhances the skewness for each
branch. In addition, to eliminate the additional runtime overhead
brought by online importance evaluation, such knowledge about
importance must be incorporated into offline training.

4 E3 OVERVIEW

For inference tasks (data) of varying difficulty, our goal is to con-
struct a neural architecture that can progressively extract the most
important features for inference, facilitating high accuracy at early
exit points, i.e., satisfying both high-accuracy and real-time re-
quirements. Here we start with the typical image classification task
because its NN can be easily extended as a backbone to other tasks
such as semantic segmentation and object detection. To achieve
the goal, we utilize XAI technique to construct a novel progressive
neural architecture E3. As shown in Fig. 4, E3 includes two phases:

Offline Training Phase for Early-Exit Accuracy Improve-
ment. E3 employs the XAI tool to extract feature importance in-
formation from the reference NN to train and stack each E3 block,
so as to construct our progressive NN. In our training framework,
we initialize the feature extractor and design a unified loss for both
skewness manipulation and branch prediction to ensure fast conver-
gence of joint training. We also utilize Neural Architecture Search
(NAS) technique to assist in constructing efficient and lightweight
branch NNs. We train the entire architecture in the cloud and then
deploy as many E3 blocks as possible to the edge, ultimately achiev-
ing efficient edge-cloud progressive inference.

Online Control Phase for Real-Time Guarantee. E3 maintains
a priority-driven queue and a task launcher at the edge to keep the

Lin et al.

Offline Training Phase
for Early-Exit Accuracy Improvement ===-+

E3 Block b; Reference

Feature Extractor NN
Initialized

Branch NN Elelagi:)le
(NAS-Based Construction
L7 Y.

Online Control Phase
for Real-Time Guarantee

Priority-Driven Queue | [Task Launcher |

i Concurrency i _

Control

\7
! Data Compressor End-to-End Latency
Branch Prediction

] MSkewneSS i (at partition point) L Estimation

Summation
K74
| Prediction Loss

Unified Training Loss

Cloud II°—> Edge

j S——
Offload

Figure 4: E3 overview.

E3 Block

Feature
Extractor
g !
c !
~~

Feature

Feature

Figure 5: E3-Net architecture. Here is an example of stacking
four E3 blocks.

number of instances being concurrently inferred at a certain level,
thereby improving resource utilization and alleviating contention.
At the same time, E3 profiles the execution time of each block
and the edge-cloud transmission overhead when executing tasks
concurrently, so as to accurately estimate end-to-end latency and
control the exit point for each task to ensure that it does not exceed
the deadline. The high accuracy in the early stage facilitates the
tasks to exit earlier to free up resources. The data compressor can
highly compress features that are unimportant in the later stage of
inference, reducing edge-cloud transmission overhead while hardly
affecting end-to-end accuracy.

5 OFFLINE TRAINING PHASE

5.1 E3 Neural Network (E3-Net)

Most progressive NNs [23, 24, 43, 54] are constructed by inserting
branches on the original model, while we construct our E3-Net with
the original model as the reference NN for XAl tool [41]. Specifically,
we follow [16] to design the E3 block and then stack the blocks to
construct the whole multi-branch network. Fig. 5 shows an example
of stacking four E3 blocks (i.e. four exit points).

An E3 block consists of the feature extractor, a branch NN, and
branch prediction summation.

E3: Early Exiting with Explainable Al for Real-Time and Accurate DNN Inference in Edge-Cloud Systems

5.1.1 Feature Extractor. As described in Section 3.2, the features
in different channels may have similar importance for NN infer-
ence, and they may all be either important or unimportant. In this
case, the most important features are difficult to concentrate for
extraction, leading to a decrease in accuracy. This necessitates the
execution of more later branches to extract the important features
to improve accuracy, thus causing additional latency. To address
this challenge, E3 intentionally manipulates the importance of data
features through non-linear transformation in the high-dimensional
feature space to ensure that such importance distribution is skewed
on different data. In other words, we enforce that after transfor-
mation, only the features in the specific k channels contribute
significantly to the branch NN inference, so that these important
features can be extracted and inferred earlier. We achieve this skew-
ness manipulation through a feature extractor, and utilize XAI tool
to jointly train the feature extractor and branch NN.

To facilitate deployment at the edge and reduce runtime over-
head, the feature extractor must be highly lightweight. In practice,
it is constructed with two convolutional layers, each having C out-
put channels. To further save memory consumption and jointly
train all branch NN, all E3 blocks share a feature extractor that
can progressively extract important features for different inputs. In
each E3 block, the extractor maps the input to the same number of
channels C, which is also the number of channels after removing
the input layer from the reference NN. The importance of features
in these channels will be evaluated by the reference NN during of-
fline training. To eliminate the substantial overhead brought by the
temporary evaluation of importance in online inference, the trained
extractor concentrates the most important features in the specific k
(k < C) channels, then directly inputs them into the branch NN for
inference. The remaining less important C — k channels’ features
are input into the next E3 block for further extraction.

5.1.2 Branch NN. Typical progressive neural architectures, such
as [23, 24, 43, 54], incorporate convolutional and fully-connected
layers on each branch NN, and require that the FLOPs of the cur-
rent branch should not exceed the FLOPs of exiting from the next
branch, which is a basic requirement of early-exit networks. How-
ever, at the same time, they require that the previous branch should
be configured with more layers to perform more detailed inference
on features that are not sufficiently extracted in the early stage,
which contradicts the original intention of reducing FLOPs through
early exit. The branch NN of E3 also contains convolutional and
fully-connected layers, but unlike these traditional progressive ar-
chitectures. Since only a few of the most important features are
extracted for each branch, a lightweight branch NN can achieve
high accuracy, facilitating efficient deployment and execution at
the edge. Furthermore, since the features extracted in the later
blocks are less important, more complex branch NNs are required
to ensure accuracy improvement. Otherwise, it is prone to cause
"overthinking" [20], i.e., the results in the later stage are inferior.
The more complex and less reached late-stage inference can be
deployed in the resource-rich cloud to ensure inference efficiency.
We further validate this insight and explain how to construct and
train branch NN in Section 5.2.4. Since the important features are
concentrated in the k channels and input to the branch NN for
inference, the number of input channels of the branch NN is k.

SenSys 25, May 6-9, 2025, Irvine, CA, USA
E3 Block

Feature Extractor
Initialized

Feature Importance Evaluator

L o

k channels

Skewness Requirement:

k channels’ features with
importance p

Normalized
Importance

Selected k Channels Reference

Channel Index

Disorder Loss
max(I;) — min(l;)

Prediction Loss

Neural Architecture Search

XAl Loss

Unified Training Loss

Figure 6: Offline training for each E3 block.

5.1.3 Branch Prediction Summation. The current branch incor-
porates the results of previous branches with a learnable weight
0 < a; < 1, allowing the results of previous branches can be reused.
This is essential for establishing connections between E3 blocks
and improving accuracy, as the inference on critical features in
previous branches is more important, and the later inference serves
merely to further enhance confidence or rectify errors. This is simi-
lar to the residual connections in CNNs [11] and skip connections
in Transformers [8, 35, 47, 50]. Multiple such connections help im-
prove end-to-end accuracy with little increase in parameters and
FLOPs [15], which is another advantage of E3-Net compared to the
existing early-exit NNs. Moreover, such point-to-point weighted
sum has two advantages over NN-based alternatives (e.g. adding
additional NN layers for combination). First, it is more lightweight
and increases negligible overhead. Second, it maintains the dimen-
sion alignment across different branch outputs, while using NN
layers (e.g. convolutional or fully-connected layers) to combine
the branch outputs may entangle them and disrupt this alignment,
adversely affecting the final inference accuracy.

5.2 Offline Training Framework

As illustrated in Fig. 6, E3 utilizes the XAI tool to evaluate feature
importance based on the reference NN, then incorporates the skew-
ness of importance into a unified loss function for training, so as
to jointly train the feature extractor and branch NN. Meanwhile,
E3 jointly trains and stacks the E3 blocks via the shared feature
extractor and branch prediction summation. The offline training
framework encompasses the following steps.

5.2.1 Initialize the Feature Extractor. The highly lightweight fea-
ture extractor may not have enough representation ability to achieve
the learning goal at the initial stage of training, leading to instability
and difficulty in convergence. Therefore, it is necessary to initialize
the feature extractor before joint training. We follow the algorithm
in [16] to select k initial channels from the output of feature extrac-
tor, wherein the top-k important features (evaluated by the XAI
tool) are most likely located. Specifically, we make such selection
according to the possibility that the top-k important features are
located in a channel, and count this possibility by feeding training
data into the reference NN. The features in these k channels will
directly serve as the input for the branch NN. In this way, joint
training does not need to explore from scratch which channels the
important features are located in, but starts from a more certain

SenSys ’25, May 6-9, 2025, Irvine, CA, USA

stage with less ambiguity, so that the requirement on the feature ex-
tractor’s initial representation ability can be lower, greatly reducing
the learning difficulty and ensuring the training quality.

5.2.2 Skewness Manipulation. We enforce the feature extractor
to skew the importance of various data features towards the se-
lected k channels, i.e., to generate new features with importance
concentrated in the selected k channels. In the online inference
phase, the feature extractor directly inputs the features in the k
channels into branch NN, without re-evaluating the importance,
thereby eliminating additional runtime overhead.

We incorporate this skewness into a unified loss function for
training. The disorder loss (Eq. 1) is used to enforce the most im-
portant features to concentrate in the selected k channels after
transformation, and the skewness loss (Eq. 2) is used to enforce the
importance skewness of the transformed features to satisfy the
threshold p. The loss functions are theoretically differentiable [27].

Ldisorder = max (max(fZ) - min(fl)s 0) s (1)

Loger = max (p - 11,0), @

where vector I contains the importance values of the selected k
channels’ features, while vector I contains the importance values
of the remaining channels’ features. The importance values are
normalized. | - | represents the 1-norm of a vector.

The skewness of feature importance can be adjusted by changing
k and p, which enables a flexible trade-off between the accuracy
and overhead for branch NN inference on devices with different
resources. In practice (Section 7.8), we explore setting appropriate
values for k and p.

During training, the current output of the feature extractor is
fed to the XAI tool to evaluate the importance of features in each
channel for reference NN inference. In experiments, we choose
the Integrated Gradients (IG)-based XAI tool [41] (as described in
Section 3.2), since it performs better and can be applied to any NN
without additional modification, although the evaluation cost is
higher, which only happens during offline training. Besides, this tool
requires high accuracy of the reference NN to prevent misjudging
importance, so here we use the pre-trained original model as the
reference NN. To further avoid possible errors of the reference NN,
we also compare the output of reference NN with the training labels,
and use it for importance evaluation only when the reference NN
predicts correctly.

5.2.3 Unified Training Loss for Each E3 Block. We define XAI loss
Lxar = Laisorder + Lskew- By combining Lx a7 and branch pre-
diction loss Lpy¢q, we obtain the unified training loss Lyp;fieq (EqQ-
3) to jointly train the feature extractor and branch NN within each
E3 block.

Lunified =4 Lprea' +(1-2) - Lxarn ®3)
where 0 < A < 1 controls the weight of the two parts, we explore
the appropriate A through preliminary experiments. Fig. 7 shows
the training results of a certain block under different A. A smaller A
makes the training focus more on the importance skewness, leading
to lower prediction accuracy. We observe that a moderate A between
0.3 and 0.6 can approximately satisfy the importance threshold
requirement with almost no impact on the accuracy of branch NN.

Lin et al.

convolutional layers in the six branch
NNs: £10,10,8,8,4,4 ©4,4,8,8,10,10

[*Skewness Achieved +Avg. Accuracy |

,,0.85 75E =80

3 08 = 05 =00 m [

g0 g 360 m

8 S €50 R B

go7 S 3o mil Ll

n 0.7 60<L(> &)30))

0.1020.30.40.5060.70.80.9 1 2 3 4 5 6

2 Exit Point

Figure 7: Impact of 1 on Im- Figure 8: Impact of branch
ageNet dataset. The reference NN structures on ImageNet
NN is EfficientNetV2. C = 24, dataset. 1 =0.5.
k=5p=08.

5.2.4 NAS-Based Construction for Branch NN. According to the
results in [43], the end-to-end accuracy does not always increase
with the number of convolutional layers in the branch NN, indi-
cating the existence of an optimal configuration. Therefore, we
utilize Neural Architecture Search (NAS) technique [25] to search
for the convolutional layer configuration that optimizes the current
branch’s accuracy. During the search process, the number of lay-
ers in the branch NN can be restricted by minimizing the unified
loss. Thus, the search objective for each block is min L,; fieq- This
prevents the occurrence of insufficient or redundant layers, and
ensures that there are multiple branches under memory constraint,
i.e., the NN layers will not all be concentrated in a few branches.
Furthermore, NAS can further optimize the structure of each layer,
and we can customize candidate operators to be hardware-friendly
to reduce execution latency.

Specifically, we utilize the Differentiable Architecture Search
(DARTS) [25], one of the state-of-the-art NAS algorithms, to auto-
matically design efficient branch NN structures for each E3 block
on specific hardware. DARTS enables efficient search via gradient
descent.

However, in practice, it is costly to search in such a large space,
so we prune the search space for NAS. The insight in Section 5.1.2
provides an opportunity for pruning. The experimental results in
Fig. 8 validate this insight. That is, in our E3-Net, the later branch
requires configuring with more NN layers than the earlier one.
Otherwise, there will be redundant layers in the early branches, or
the layers in the later branches are insufficient to perform more
careful inference on the unimportant features. This indicates that
when constructing each branch NN, we only need to require NAS
to gradually add layers on the basis of the previous branch NN
structure until the training accuracy stops improving, instead of
searching from scratch.

The training framework iteratively searches for the structure
of each branch NN and retrain the corresponding E3 block until
convergence. Initially, we set the first branch NN to consist of only
one global-average pooling layer and one fully-connected layer.
As shown in Fig. 9, each subsequent branch NN is constructed
based on the structure of previous one, either keeping unchanged
or gradually adding more convolutional layers before the pooling
layer. We fix the number of input channels for the branch NN to k,
and the number of output channels for each intermediate convolu-
tional layer varies from 16 to 512 exponentially. Since we mainly
conduct experiments on the GPU platform, here we choose dense
convolutional layers that are more friendly to GPU. If customiza-
tion is targeted at other processors such as CPU, the depthwise

E3: Early Exiting with Explainable Al for Real-Time and Accurate DNN Inference in Edge-Cloud Systems

k channels

Structure of Conv. Layers
in the Previous Branch

_— ... < Channely,,, = 16 /32 / 64/ 128 / 256 / 512 |

Figure 9: NAS-based construction for branch NN.

separable convolution [14] can be employed. Due to the substantial
computation and memory overhead of fully-connected layers, each
branch NN contains only one fully-connected layer subsequent to
all the layers for classification, with its structure determined by the
adjacent layer and branch outputs.

5.2.5 Block Stacking in Edge-Cloud Systems. Since the inference
exits from different branches dynamically, we stack and train each
E3 block progressively from front to back, so that the accuracy
of all branches is high and improves progressively, rather than
training all blocks simultaneously to solely pursue high accuracy
for the last branch. During the search process for each block, we
fix the parameters of previously trained blocks when calculating
gradients, and only retrain the parameters of the currently searched
block. Meanwhile, we require the average accuracy improvement
on the training dataset after adding a block to be greater than 2%,
otherwise stop stacking blocks.

To perform the edge-cloud model partition and accelerate train-
ing, we first stack and train all E3 blocks on the powerful cloud
server. Then, the early blocks are deployed to the edge one by one
until the edge device is out of memory, while the remaining blocks
are retained in the cloud. A shared feature extractor must also be
replicated for the edge. The abundant computation and memory
resources in the cloud are sufficient to handle the complex inference
in the later branches.

Such a design fixes the edge-cloud partition point and deploys
as many early blocks as possible at the edge. If the edge memory
is sufficient to deploy all E3 blocks, there is no need for the cloud,
thereby eliminating the overhead of edge-cloud transmission. This
is motivated by three factors. Firstly, in most environments, espe-
cially with the increasingly powerful edge devices, the bandwidth
between edge and cloud is insufficient to ensure that the computa-
tion latency saved by the cloud can offset the transmission latency,
even if the data to be transmitted are compressed. Today’s powerful
edge devices are striving to complete tasks locally, without offload-
ing to the cloud. Secondly, in E3, since the important features have
been extracted multiple times in the early blocks through XATI tech-
nique, the features extracted in the later blocks are less important
and contribute less to improving end-to-end accuracy, i.e., they
are highly compressible (validated in Section 7.6). Therefore, the
partition point should be located in the later stage to reduce the
feature transmission overhead. Thirdly, compared to potential early
offloading in dynamic partition [23, 24, 54], since the execution
in the cloud is similar to that at the edge, E3 saves the overhead
caused by early offloading to execute more blocks at the edge by
fixing the partition point to later stage.

SenSys 25, May 6-9, 2025, Irvine, CA, USA

6 ONLINE CONTROL PHASE

Online execution control is to determine the exit point for each
inference task according to current hardware resources, available
edge-cloud bandwidth, and the task’s SLO, ensuring the accuracy
while satisfying the deadline requirement. This problem is highly
complex, and the corresponding decision-making algorithms may
result in significant runtime overhead, affecting model execution.
Although the learning-based algorithms [54] can achieve near-
optimal results with relatively low overhead, they are unstable and
costly to train in practice. In contrast, our method has negligible
runtime overhead and is more stable.

Given that the offline training phase has been focused on improv-
ing early-exit accuracy by utilizing the XAI technique to construct
and train the E3-Net, we perform dynamic execution control in the
online phase to focus on ensuring the real-time performance for
each inference task. Therefore, a real-time-first exit mechanism is
adopted, which makes the inference exit as late as possible under
the premise of satisfying the deadline requirement. The inference
will exit earlier if the confidence threshold is satisfied before the
deadline, so the high accuracy in the early stage can facilitate early
exit to free up resources.

6.1 Priority-Driven Queue and Task Launcher

Most modern hardware platforms support the concurrent execu-
tion of multiple deep learning tasks [28, 30, 31]. However, due to
constrained resources, these tasks may encounter severe resource
contention, leading to mutual blocking. As shown in Fig. 10, we
explore the average execution latency of a certain E3 block and the
GPU utilization under different numbers of concurrent tasks on two
edge GPU platforms with different resources. The results indicate
that insufficient concurrent tasks will lead to low GPU utilization.
Conversely, when the number of concurrent tasks exceeds a certain
threshold, although the GPU utilization is high, excessive tasks in-
duce severe resource contention. This is particularly evident on the
resource-constrained Nano, where each task experiences varying
degrees of blocking, leading to an increased latency.

Therefore, in order to ensure resource utilization, mitigate block-
ing caused by resource contention among concurrent tasks, reduce
task processing latency, and manage the priority for task dequeue-
ing, we introduce a priority-driven queue and a task launcher at
the edge to control the number of concurrent tasks in E3.

Specifically, E3 receives inference tasks at the edge and tem-
porarily stores them in the priority-driven queue. We adopt the
Earliest-Deadline-First (EDF) strategy, i.e., the task with earlier
absolute deadline will have higher priority and be launched first
by the task launcher. The task launcher monitors the number of
tasks currently being inferred on the edge device, launching a new
task whenever one exits, so as to keep the number of concurrent
tasks at M. At the optimal number M, the edge GPU utilization
approaches 100% and the average latency of tasks is minimized. On
the specific device, M is a fixed value that can be measured offline.
As shown in Fig. 10, MNano = 2, Mnx = 7. Moreover, since there is
less contention among tasks when the number of concurrent tasks
is less than M, even if tasks arrive too late to replenish M, it will
only lead to a reduction in the utilization, with almost no impact

SenSys ’25, May 6-9, 2025, Irvine, CA, USA

B @Avg. Latency of Block (Nano, NX) Task Launcher || Priority-Driven
-= -+Avg. GPU Utilization (Nano, NX) Task Queue
’gSO > = 1008 S S mmo
00| S 7 8 g R
g40 |4/ 60 ©
© s = | Estimate End-to-End
©20 i 405 ofioa - h
B atenc
o B b 20 O Y
123456738 %

Number of Concurrent Tasks

Figure 10: Block latency and
GPU utilization on NVIDIA Jet-
son Nano [32] and Xavier NX
[33] under different numbers of Figure 11: Online execu-
concurrent tasks. tion control flow.

on the inference latency, ensuring that the task does not exceed the
deadline due to this.

Since the cloud resources are far more abundant than the edge,
and only a fraction of tasks from the edge will be offloaded to the
cloud, we only constrain the concurrency at the edge while ignoring
the contention in the cloud.

6.2 End-to-End Latency Estimation

The priority-driven queue and task launcher can sustain a stable
execution environment, making the execution time of each E3 block
at the edge more stable and easier to estimate. While exploring M
offline, we can profile the worst-case execution time (WCET) [49]
ibi for each E3 block b; under M concurrent tasks. Considering the
concurrency capability of cloud, and only a fraction of tasks from
the edge will execute the blocks in the cloud, for E3 blocks in the
cloud, ib,- is approximated as the WCET when that block is executed
alone on the cloud server.

During online execution, the currently available edge-cloud band-

width avail_bw can be monitored to estimate the edge-cloud trans-

comp_data
avail_bw

sents the size of the compressed data to be transmitted. Our data

compressor employs learning-based quantization [1] and LZW com-
pression [6], dynamically adjusting the compression rate according
to different features, ensuring maximum compression while pre-
serving accuracy. The overhead of the compressor is very low, with
the total time consumed by compression at the edge and decompres-
sion in the cloud kept within 10 ms. Therefore, we set the estimated
time consumption of the compressor icomp to 10 ms. The data com-
pression and edge-cloud transmission are only considered when
the task execution reaches the partition point, otherwise we set

mission latency, i.e., lyrans = , where comp_data repre-

ltrans = 0 and lcomp =0.

Then, the estimated end-to-end latency of a task after executing
block b; is L = L + ibi + itmns + icomp, which is used to decide
whether to execute block b;. L is the actual time consumed before
executing b;, including the queuing time. We use the worst-case
time to estimate L to minimize the possibility of exceeding the
deadline.

6.3 Online Execution Control Flow

As illustrated in Fig. 11, our decision-making logic is intuitive. For
each task being executed in E3, we calculate L before executing

Lin et al.

the next block b;. If L does not exceed the relative deadline of the
task, and the confidence (i.e., probability value) of the current block
prediction does not exceed 0.5, then execute b;, otherwise, it exits
at the current block. If L has exceeded the relative deadline before
executing the first block due to queuing, then the task is directly
removed from the queue.

When the inference reaches the partition point and decides to
continue execution, the data compressor compresses the C — k
channels’ features outputted by the E3 block before the partition
point, then the compressed features are transmitted to the cloud
for decompression and execution of the next block. Note that the
branch results are transmitted as well, as they are important and the
data size is very small, so they are not compressed. The execution
in the cloud is similar to that at the edge.

After executing the last E3 block, the inference exits directly.

7 EVALUATION

7.1 Implementation and Setup

Testbed. We implement E3 and reference NNs based on PyTorch
[34], and conduct experiments on edge-cloud platforms equipped
with different GPUs. For the edge, we use two NVIDIA embedded
platforms with different resources. For the cloud, we use a server
equipped with NVIDIA GeForce RTX 3080. The specific information
of the devices is shown in Table 1. Considering the shared memory
and other occupations, their available memory is reduced by 2GB.
We use Wondershaper [17], a lightweight bandwidth control script,
to adjust the available edge-cloud bandwidth to the default 10 Mbps.

Table 1: Devices Information

Device [GPU [Memory | Computility

Jetson Nano | 128-core Maxwell 4GB 0.5TFLOPS

Xavier NX 384-core Volta 8GB 6.8TFLOPS
8704-core

Cloud Server GeForce RTX 3080 10GB 29.8TFLOPS

Baselines. We compare E3 with three advanced edge-cloud pro-
gressive neural architectures (Edgent [24], SPINN [23], and EdgeML
[54]) introduced in Section 2. Since they all follow BranchyNet [43]
to construct branchy models, here we take the reference NN in
E3 as the original model, insert branches at equidistant points of
FLOPs across its layers, and let the number of branches be the same
as that of E3 blocks for fair comparison.

We also compare with two non-early-exit architectures: AgileNN
[16] and PNC [48], which are primarily designed for data compres-
sion and computation offloading, but the strategy is partially similar
to E3. This can be regarded as an ablation study to highlight the
flexibility and benefits of progressive inference.

In addition, we set a naive baseline, which uses the original model
without early-exit branches, and iteratively selects the optimal
edge-cloud partition point at runtime according to the method in
Neurosurgeon [19].

Reference NN. E3 is primarily composed of convolutional lay-
ers that are more lightweight compared to Transformer blocks [9].
The features focused on by CNNs and Transformers are different,
and the features that are important to a Transformer may not hold

E3: Early Exiting with Explainable Al for Real-Time and Accurate DNN Inference in Edge-Cloud Systems

the same importance for a CNN [4, 26, 35]. Besides, the baselines
consistently lean towards CNN-based models. Therefore, we set
up three typical CNN-based reference NNs with different accuracy,
FLOPs, and number of parameters: ResNet50 [11], MobileNetV2
[38], EfficientNetV2 [42]. These models have already been veri-
fied to achieve considerable performance on multiple open-source
datasets, thus they are suitable as reference NNs. Here they are all
pre-trained on ImageNet [37].

We have also considered using Transformer blocks to construct
the feature extractor and branch NNs, but stacking multiple E3
blocks makes it difficult to be lightweight to deploy on edge plat-
forms. This is a limitation of the proposed E3 architecture.

Dataset. We conduct experiments on two image classification
datasets of varying difficulty, namely CIFAR-100 [21] and ImageNet
ILSVRC2012 [37], where the training set is used to supervise train-
ing, and the test set is used to generate inference tasks. In order
to test the robustness to difficult instances at the same time, we
randomly select 30% of samples in the test set and add noise such as
rain, snow, fog, occlusion, strong light, blurring, etc. to them using
the imgaug [18] library. All the images are reshaped to 224x224.

Parameter Settings. Unless otherwise specified, the following
settings are used by default in the experiments. The feature ex-
tractor consists of two convolutional layers, each with C output
channels, where C is the number of channels after removing the
input layer from the reference NN. A = 0.5, p = 0.8, k = [20% X C].
MnNano = 2, MNx = 7. The Stochastic Gradient Descent (SGD)
optimizer [3] is used for training, with a learning rate set to 0.01
and the standard weight decay set to 5 x 10~%. The batch size in
training is 64. The batch size for inference is set to 1 to simulate
tasks arriving frame-by-frame. The task arrival rate is set to the
frame rate of a typical camera, i.e. 30 fps. The relative deadline
for each task is set to the same to ensure a throughput close to
100%, which is defaulted to 50 ms. For some parameters specific to
the baselines, we employ settings that maximize their respective
performance.

Metrics. All the results are averaged over five runs on the test set.
We mainly focus on four metrics: (i) deadline satisfaction rate, i.e.
the ratio of tasks completed before the deadline to the total number;
(if) accuracy, i.e. top-1 accuracy in the image classification task; (iii)
edge energy consumption per task. During execution, since it is
difficult to accurately measure the energy consumption for a single
task, we use jetson-stats [2], an open-source monitoring toolkit, to
periodically profile the average power of edge devices, subtract the
idle power, then multiply by the total processing time for the entire
test set, and finally average the resulting energy consumption to
each task; (iv) GPU utilization (warps/s), i.e. the number of active
warps between two timestamps during execution [7].

7.2 System Overhead

Although the Integrated Gradients (IG)-based XAl tool [41] requires
20 ~ 100 times of gradient calculations to derive each importance
measurement, such evaluation is only conducted during offline
training. As shown in Fig. 12, we test the convergence overhead
of offline training for E3-Net. Since E3-Net is stacked and trained
block by block, here we take the training of the first and last blocks
as examples. The earlier block converges faster because it is more

SenSys 25, May 6-9, 2025, Irvine, CA, USA

—1st block on CIFAR 1st block on ImageNet
—last block on CIFAR —last block on ImageNet

=100 7
‘E 80 da 14 dobu 6
T | AARMGEMDATA g s
W]

g 40 W ‘?(NM/\\MM/\IMI\”‘W W 7 3 'S
> I/ =2 MO A A/ A AN
2 20 1 A S AGIA A oy AP AR A en 5

0 0

0 100 200 300 400 0 100 200 300 400

Epochs # Epochs

(a) Accuracy convergence (b) Loss convergence

Figure 12: The convergence overhead under different training
datasets. We take the first and last blocks as examples here.
The reference NN is EfficientNetV2.

Table 2: The FLOPs ratio (left value) and memory occupation
ratio (right value) relative to the original model under tradi-
tional BranchyNet and our E3-Net on ImageNet ILSVRC2012.

Arch.-Ref. NN | ResNet50 | MobileNetV2 | EfficientNetV2

BranchyNet 132%, 139% 141%, 147% 128%, 133%
E3-Net 78%, 80% 83%, 84% 70%, 77%

lightweight. Although the later blocks are more complex, they are
not trained from scratch due to the summation of important results
from earlier blocks, so their convergence is not much slower and
can further improve accuracy. These results indicate that despite the
increased learning complexity induced by skewness manipulation,
fast convergence can still be achieved through appropriate loss
function design and initialization for the feature extractor.

Compared to the overhead of offline training, the overhead of
online execution control is more concerning. The reinforcement-
learning-based algorithm in EdgeML exhibits a high convergence
cost (> 200 epochs), and its average execution time reaches 20 ms.
Moreover, the additional NNs it introduces lead to more contention
for runtime memory and computation resources. In contrast, our
online control only involves simple calculations and judgments, so
its runtime overhead can almost be ignored.

In addition, as shown in Table 2, since the baselines construct
a progressive neural network, BranchyNet, by inserting multiple
branches on the original model, it inevitably increases the FLOPs
and memory occupation, reaching approximately 1.5 times that of
the original model. In contrast, we use the original model as the
reference NN for the XAl tool, gradually stacking lightweight E3
blocks to construct E3-Net. The total FLOPs and memory occupa-
tion are at most 84% of the reference NN.

7.3 E3-Net Structure

As shown in Fig. 13, we test the E3-Net structure under different
training datasets, edge devices, and reference NNs. The results in-
dicate that difficult datasets (e.g. ImageNet) require stacking more
blocks and branch NN layers to perform more detailed classifica-
tion. Due to insufficient memory, Nano is compelled to offload some
blocks to the cloud. Employing a reference NN with superior accu-
racy (e.g. EfficientNetV2) helps to extract important features more

SenSys ’25, May 6-9, 2025, Irvine, CA, USA

[®@Cloud Blocks BEdge Blocks |

2 40 m "
> 35 <
3 30 EZ%EE g
o
= EE e el 8l &l 6l |g]| g
g 15 5] [5] (6 6] [6] [6] [6] [6]| <
5 10 |[8] 8] 6] 5 (5] [5] [5] [5]| £
2 5 |4 4 & 4 [4] [4] [4] [4]| @
o 14l [l [4] 4] [4] [4] [4] [2]
Dataset: C C C | | | | |
Edge: A X A X A X A X
Ref NN:M M R M RRE E

Figure 13: E3-Net structure under different datasets (C:
CIFAR-100, I: ImageNet), edge devices (A: Nano, X: NX), and
ref. NNs (M: MobileNetV2, R: ResNet50, E: EfficientNetV2).

[d-+MobileNetV2-E3-Net E--ResNet50-E3-Net
A-=-MobileNetV2-BranchyNet E]-%-ResNet50-BranchyNet

O EfficientNetV2-E3-Net
[0 -e-EfficientNetV2-BranchyNet

100 ‘100
< g0 ResNets0793% o " E g0
(8] >
® 60 %8 60
3 Q
g 4o 5 40
VighileN¢
o 2 2% ,af{ﬂ@‘éﬂ
< 0 < 0
1 2 3 4 5 6
Exit Point EX|t Pomt

(a) CIFAR-100
£100 2100
‘5 80 RpsNel60-76.5% - \E 80
g.“ébl}N 5tV2:70.8% g 60
Q 2
g 40 S 40R,S,N9L5,Q,33m§ -

objleNet)l2. 717“
% 20 % 50 Jﬂ
z O < 0
1.2 3 4 5 6 7 1
Exit Point EX|t Pomt

(b) ImageNet ILSVRC2012

Figure 14: The average accuracy and latency at all exit points
under different network architectures (tested on the server).

accurately, which elevates the upper accuracy limit that E3-Net can
reach, but this requires stacking more blocks. The branch NN layers
consistently follow a structure of fewer layers in the earlier branch.
Since only a few of the most important features are extracted for
each branch, a lightweight branch NN can achieve high accuracy,
facilitating efficient deployment and execution at the edge.

7.4 Accuracy and Deadline Satisfaction

As shown in Fig. 14, we first validate the advantages of E3-Net over
BranchyNet on the server. Since important features are extracted
for inference, the accuracy of E3-Net is significantly higher than
that of BranchyNet in early branches. Besides, the accuracy of E3-
Net can approximate that of EfficientNetV2 when only executed to
the fourth exit point, which saves more than 60% time compared
with one complete inference of EfficientNetV2. This benefits from
the lightweight early branch NNs. It means that a sufficient number
of blocks can be executed within the deadline to ensure accuracy.
It also means that even on the resource-constrained Nano, the ac-
curacy of E3-Net can approximate that of the reference NN at the

Lin et al.

[BAvg. Satisfaction Rate @ Avg. Accuracy | .

5100 100 :\9138 g80°\°
< 80 80 < = =
S 6 60 3 5 60 - 60 &
B 4 0 40 5 G 40 - 40 S
2 20 % 208 9§20 H 20 8
5 0 0 < % 0 H 0 <
n v\"“\‘\\e‘w v\ $ \‘\\, (%) %} v\e D>

(a) CIFAR-100, Jetson Nano

100 10058

g 80 80 & g 1008
g < 80 <
5 60 60 3 § 60 &
S 40 40 £ 3 40 £
2 20 Eé 208 ¢ 20 §
£ 0 0 < 2 0 <
7 s SN ?\»\ N € 7 oS \»\v‘a\w &

(c) ImageNet ILSVRC2012, Jetson Nano (d) ImageNet ILSVRC2012, Xavier NX

Figure 15: The average deadline satisfaction rate and accuracy
of task processing under different edge devices and datasets.
The reference NN is EfficientNetV2.

[+Edgent +SPINN EdgeML +E3]

o000
[SISEN T
o000
(<Y SENYOY- N

1 2 3 .4 5 6 7
Exit Point

(b) Xavier NX

Cumulative Exit Rate
Cumulative Exit Rate

3 4 5
Exit Point

(a) Jetson Nano

Figure 16: Early-exit CDF on different edge devices (tested on
ImageNet ILSVRC2012, the reference NN is EfficientNetV2).

edge. The later exit points have less accuracy improvement because
the later features are less important and thus the error correction
ability of corresponding branches is reduced, contributing little to
accuracy. In contrast, the accuracy of BranchyNet in the early stage
is not high. BranchyNet inserts branches on the reference NN, and
the early branch NNs are more complex, resulting in more compu-
tation latency. Notably, the latency when executing to the fourth
exit point exceeds that when executing the original EfficientNetV2.

As shown in Fig. 15, E3 outperforms the three progressive ar-
chitectures in both accuracy and deadline satisfaction rate when
processing tasks, with an accuracy increase of >50%, close to the
naive baseline, and a deadline satisfaction rate close to 100%. While
AgileNN effectively compresses the features for transmission and
retains minimal local computation, it lacks multiple extractions for
important features. This results in a lower accuracy compared to
E3. PNC only progressively compresses features for offloading ac-
cording to deadline, lacking a high-accuracy early-exit mechanism.
Under stringent deadlines, PNC may drop some important features
to reduce transmission overhead, thus its accuracy is inferior to E3.

Guided by XALI E3 provides accuracy guarantee for early exit
during the offline training phase. This also enables E3’s online
control to focus on real-time performance, thereby adapting to re-
quirements with simpler calculations and judgments. Moreover, as
shown in Fig. 16, under the default relative deadline and bandwidth,
the lightweight branch NN in E3 enable tasks to exit from later exit

E3: Early Exiting with Explainable Al for Real-Time and Accurate DNN Inference in Edge-Cloud Systems

[=CIFAR-100 @ImageNet ILSVRC2012] --EdgeML —E3
<1200 520
81000 2
= X
B2 800 =15
gg 600 810 [J[UT VL Vol Taks
%i 400 B g 5 A Vv“’ - "‘ ”\\/ v i,'\fvv,"
2 € 200 7 " RE F% F% :
wa o = = B B BB 0
5 IR\ PRI AR X W) 0 10 20 30 40 50 60
SRR CA T Time (s)

Figure 17: Average edge energy Figure 18: GPU utilization
consumption per task on the on Nano during task exe-

Nano-Server platform. cution.

[Dszb3Db4Db5Db5Db7 --Transmission Latency‘

100 —= 25 %
2 g0 e o 20 &
> >
g 60 15 8
5 40 10 £
£ 20 5
0 | : 05

20 25 <

30 3
Compression Rate

Figure 19: The average end-to-end accuracy and edge-cloud
transmission latency of the tasks when compressing the C—k
channels’ features before block b; with different compression
rates (tested on ImageNet ILSVRC2012, the reference NN is
EfficientNetV2).

points, allowing for more inference to further improve accuracy. E3
also reduces additional transmission overhead by decreasing the
number of tasks offloaded to the cloud, that is, most tasks exit before
the fixed edge-cloud partition point. Especially on the resource-
rich NX platform, all E3 blocks are deployed at the edge, which
eliminates transmission overhead and enables more blocks to be
executed within the deadline to improve accuracy. In contrast, the
dynamic edge-cloud partition of the baselines has to balance the
benefits and additional overheads brought by early offloading.

7.5 Edge Energy Consumption and Resource
Utilization

For resource-constrained edge devices, enhancing energy efficiency
is essential. As shown in Fig. 17, we observe the energy consumption
per task at the edge. The edge energy consumption in edge-cloud
progressive inference (e.g. E3 and EdgeML) is naturally higher
than that of compression+offloading mode (e.g. AgileNN and PNC).
Both E3 and EdgeML ensure that inference exits as late as possible
under the premise of guaranteeing real-time performance. EdgeML
also makes a trade-off between task latency and energy, but its
learning-based online control algorithm is more complex and has
higher runtime energy consumption. The lightweight NNs and
online control algorithm in E3 help free up resources and reduce
energy consumption at the edge. Consequently, although E3 does
not explicitly optimize for energy saving, its energy efficiency is
comparable to that of EdgeML. Moreover, as shown in Fig. 18, due to
the lack of concurrency control in EdgeML, the edge GPU utilization
during execution is 30% lower than E3.

SenSys 25, May 6-9, 2025, Irvine, CA, USA

\ BAvg. Satisfaction Rate @ Avg. Accuracy\

002 2100 _ 1008
80T = 7 B <
60 3 560 |[] 11 eo 3
g £ b N g
AR I e
220 || N
208 22 | W LI T 20 8
(2]

IR\ IR S\ N\ ¢>
gg‘g-\\e“ \"%dg%?gge“

(

a) Deadline 100ms, default bandwidth (b) Deadline 100ms, bandwidth 30Mbps

£[+Edgent +SPINN ~EdgeML «E3| £

14 1 N [v4 1

=) Clodd =

i Cloud b8

o o

204 / 204

T0.2 802

20 0

E 1 2 3 4.5 6 7 £ 1 3 4 5 7
() Exit Point (6] Exit Point

(c) Deadline 100ms, default bandwidth (d) Deadline 100ms,bandwidth 30Mbps

Figure 20: The average deadline satisfaction rate, accuracy,
and early-exit CDF of tasks under different relative dead-
lines and edge-cloud bandwidths (tested on the Nano-Server
platform, the reference NN is EfficientNetV2, and the dataset
is ImageNet ILSVRC2012).

7.6 Compression and Transmission for Less
Important Features

As shown in Fig. 19, the features extracted later in E3 contribute
less to improving end-to-end accuracy, i.e., they are less important,
and the features in the C — k channel are highly compressible,
resulting in lower edge-cloud transmission overhead. This is one
of the reasons for deploying as many blocks as possible at the edge.
Besides, the overhead of our data compressor is very low, with the
total time consumed by compression at the edge and decompression
in the cloud kept within 10 ms, and it is only invoked when cloud
offloading occurs.

7.7 Adaptability to Deadlines and Bandwidths

As shown in Figs. 20(a) and 20(c), when we extend the relative dead-
line to 100 ms, the deadline satisfaction rate under all architectures
naturally increases. Most tasks can be executed until later branches
and even offloaded to the cloud, thereby improving accuracy. The
execution mechanism in E3 enables most tasks to exit earlier once
satisfying the confidence threshold. The advantages in compres-
sion and transmission for unimportant features make E3 further
superior to the baselines.

On this basis, we adjust the edge-cloud bandwidth to 30 Mbps. As
shown in Figs. 20(b) and 20(d), compared to the default bandwidth
of 10 Mbps, a higher bandwidth enables tasks to utilize the cloud
resources at a lower cost. The baselines accelerate inference by dy-
namically deciding the partition point to offload more computation
to the cloud. Although E3 employs a fixed partition point, it also
offloads more tasks to the cloud to execute more blocks within the
deadline, so as to improve accuracy.

7.8 Effect of Skewness Manipulation

The skewness manipulation is the basis for constructing E3. To
study its effectiveness, we observe the performance and structure

SenSys ’25, May 6-9, 2025, Irvine, CA, USA

Lin et al.

Table 3: The effect of skewness manipulation on achieved skewness (|f1 |), average accuracy of tasks (Acc.), total number of
layers in all branch NN (# Layers), and average edge-cloud transmission latency (Trans.). Tested on the Nano-Server platform,

the reference NN is EfficientNetV2.

Dataset CIFAR-100 ImageNet ILSVRC2012
k [10% X CT =3 [20% x C] =5 [30% x C] =7 [10% X C] =3 [20% x C] =5 [30% x C| =7
P 07 | 0.8 | 0.9 0.7 | 08 | 09 0.7 | 08 | 09 07 | 08 | 0.9 07 | 08 | 0.9 0.7 | 08 | 09
| I | 0.67 | 0.75 | 0.83 || 0.69 | 0.8 | 0.86 || 0.71 | 0.81 | 0.87 || 0.66 | 0.73 | 0.81 || 0.71 | 0.77 | 0.86 0.7 | 0.78 | 0.86
Acc. (%) 80.5 | 80.4 | 79.3 || 82.5 | 83.7 | 81.1 81.4 | 83.4 | 81.3 || 75.1 | 76.3 | 75.6 || 78.4 | 785 | 79.2 || 783 | 78.9 | 79.1
Layers 31 29 29 34 32 31 36 36 34 41 40 40 45 43 42 47 47 46
Trans. (ms) || 15.2 | 13.5 | 11.9 || 141 | 12.1 | 11.2 || 13.5 | 12.1 | 11.3 || 147 | 13.1 | 10.9 || 13.5 | 11.6 | 10.3 || 13.5 | 11.3 | 10.5

of E3-Net under different k and p. As shown in Table 3, when
k is smaller or p is larger, there is a higher requirement on the
importance skewness. The branch NN can achieve high accuracy
with lower resource overheads, making it more suitable for edge
deployment. However, the lightweight feature extractor usually
cannot meet excessively high skewness requirements. Moreover,
higher skewness makes the branch NN more sensitive to the input
and prone to wrong perception, even though E3 can alleviate such
accuracy decline through progressive inference by stacking multiple
blocks. In addition, higher skewness can increase the sparsity of
the C — k channels’ features, resulting in higher compressibility
and thus reducing edge-cloud transmission overhead. In practice,
we usually set p = 0.8 and k = [20% X C], which is a trade-off.

8 CONCLUSION

In this paper, we incorporate explainable Al technique to construct
a progressive neural architecture E3, which is more lightweight,
efficient, energy-saving, and incurs almost no additional runtime
overhead. With stable online execution control, E3 can simultane-
ously satisfy real-time and high accuracy for different task data,
and ensure resource utilization. We validate its superiority and
scalability on various edge-cloud platforms, datasets, and reference
models. In the future, we are also interested in extending the ideas
in E3 to efficient edge inference for other scenarios.

ACKNOWLEDGMENTS

This work was supported in part by the National Natural Science
Foundation of China under Grant 62350710797 and in part by the
Science and Technology Plan Project of Shenzhen through Project
Number JSGG20220831110002004.

REFERENCES

[1] Eirikur Agustsson, Fabian Mentzer, Michael Tschannen, Lukas Cavigelli, Radu
Timofte, Luca Benini, and Luc V Gool. 2017. Soft-to-hard vector quantization for
end-to-end learning compressible representations. Advances in neural information
processing systems 30 (2017).

[2] Raffaello Bonghi. 2024. jetson-stats. https://rnext.it/jetson_stats/.

[3] Léon Bottou. 2012. Stochastic gradient descent tricks. In Neural Networks: Tricks
of the Trade: Second Edition. Springer, 421-436.

[4] Shengcao Cao, Mengtian Li, James Hays, Deva Ramanan, Yu-Xiong Wang, and
Liangyan Gui. 2023. Learning lightweight object detectors via multi-teacher
progressive distillation. In International Conference on Machine Learning. PMLR,
3577-3598.

[5] Tianlong Chen, Yu Cheng, Zhe Gan, Lu Yuan, Lei Zhang, and Zhangyang Wang.
2021. Chasing sparsity in vision transformers: An end-to-end exploration. Ad-
vances in Neural Information Processing Systems 34 (2021), 19974-19988.

[6] HN Dheemanth. 2014. LZW data compression. American journal of engineering
research 3, 2 (2014), 22-26.

—_
jon

[12

(13]

[14

[15

(16

[17

(18

[19

[20

[21

[22

~
&

[24]

[25

[26

Yaoyao Ding, Ligeng Zhu, Zhihao Jia, Gennady Pekhimenko, and Song Han.
2021. Tos: Inter-operator scheduler for cnn acceleration. Proceedings of Machine
Learning and Systems 3 (2021), 167-180.

Yihe Dong, Jean-Baptiste Cordonnier, and Andreas Loukas. 2021. Attention is
not all you need: Pure attention loses rank doubly exponentially with depth. In
International Conference on Machine Learning. PMLR, 2793-2803.

Alexey Dosovitskiy. 2020. An image is worth 16x16 words: Transformers for
image recognition at scale. arXiv preprint arXiv:2010.11929 (2020).

Trevor Hastie, Robert Tibshirani, Jerome Friedman, Trevor Hastie, Robert Tib-
shirani, and Jerome Friedman. 2009. Random forests. The elements of statistical
learning: Data mining, inference, and prediction (2009), 587-604.

Kaiming He, Xiangyu Zhang, Shaoging Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770-778.

Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang. 2019. Filter pruning
via geometric median for deep convolutional neural networks acceleration. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.
4340-4349.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the knowledge in
a neural network. arXiv preprint arXiv:1503.02531 (2015).

Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. Mobilenets:
Efficient convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861 (2017).

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.
2017. Densely connected convolutional networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition. 4700-4708.

Kai Huang and Wei Gao. 2022. Real-time neural network inference on extremely
weak devices: agile offloading with explainable AL In Proceedings of the 28th
Annual International Conference on Mobile Computing And Networking. 200-213.
Bert Hubert, Jacco Geul, and Simon Séhier. 2020. The Wonder Shaper 1.4.1.
https://github.com/magnific0/wondershaper.

Alexander Jung. 2020. Overview of Augmenters. https://imgaug.readthedocs.io/
en/latest/source/overview_of_augmenters.html.

Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor Mudge, Jason
Mars, and Lingjia Tang. 2017. Neurosurgeon: Collaborative intelligence between
the cloud and mobile edge. ACM SIGARCH Computer Architecture News 45, 1
(2017), 615-629.

Yigitcan Kaya, Sanghyun Hong, and Tudor Dumitras. 2019. Shallow-deep net-
works: Understanding and mitigating network overthinking. In International
conference on machine learning. PMLR, 3301-3310.

Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features
from tiny images. (2009).

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifi-
cation with deep convolutional neural networks. Advances in neural information
processing systems 25 (2012).

Stefanos Laskaridis, Stylianos I Venieris, Mario Almeida, Ilias Leontiadis, and
Nicholas D Lane. 2020. SPINN: synergistic progressive inference of neural net-
works over device and cloud. In Proceedings of the 26th annual international
conference on mobile computing and networking. 1-15.

En Li, Liekang Zeng, Zhi Zhou, and Xu Chen. 2019. Edge AI: On-demand accel-
erating deep neural network inference via edge computing. IEEE Transactions on
Wireless Communications 19, 1 (2019), 447-457.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. 2018. Darts: Differentiable
architecture search. arXiv preprint arXiv:1806.09055 (2018).

Yufan Liu, Jiajiong Cao, Bing Li, Weiming Hu, Jingting Ding, and Liang Li. 2022.
Cross-architecture knowledge distillation. In Proceedings of the Asian conference
on computer vision. 3396-3411.

Vinod Nair and Geoffrey E Hinton. 2010. Rectified linear units improve re-
stricted boltzmann machines. In Proceedings of the 27th international conference
on machine learning (ICML-10). 807-814.

https://rnext.it/jetson_stats/
https://github.com/magnific0/wondershaper
https://imgaug.readthedocs.io/en/latest/source/overview_of_augmenters.html
https://imgaug.readthedocs.io/en/latest/source/overview_of_augmenters.html

E3: Early Exiting with Explainable Al for Real-Time and Accurate DNN Inference in Edge-Cloud Systems

[28

[29]

[30

[31]

[32]

[33]

[34

[35

[36]

[37]

[38]

[39

[40

[41]

[42

[43]

[44

[45

[46]

[47

[48]

[49

[50]

[51]

[52

NVIDIA. 2015. CUDA Multi-Streams. https://developer.nvidia.com/blog/gpu-
pro-tip-cuda-7-streams- simplify-concurrency/.

NVIDIA. 2020. GeForce RTX 3080 Family. https://www.nvidia.com/en-us/geforce/
graphics-cards/30-series/rtx-3080-3080ti/.

NVIDIA. 2020. Multi-Instance GPU. https://docs.nvidia.com/datacenter/tesla/
mig-user-guide/.

NVIDIA. 2020. Multi-Process Service. https://docs.nvidia.com/deploy/pdf/
CUDA_Multi_Process_Service_Overview.pdf.

NVIDIA. 2022. NVIDIA Jetson Nano. https://www.nvidia.com/en-
us/autonomous-machines/embedded- systems/jetson-nano/product-
development/.

NVIDIA. 2022. NVIDIA Jetson Xavier. https://www.nvidia.com/en-us/
autonomous-machines/embedded- systems/jetson-xavier-series/.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019).

Maithra Raghu, Thomas Unterthiner, Simon Kornblith, Chiyuan Zhang, and
Alexey Dosovitskiy. 2021. Do vision transformers see like convolutional neural
networks? Advances in neural information processing systems 34 (2021), 12116~
12128.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. " Why should i
trust you?" Explaining the predictions of any classifier. In Proceedings of the 22nd
ACM SIGKDD international conference on knowledge discovery and data mining.
1135-1144.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.
2015. Imagenet large scale visual recognition challenge. International journal of
computer vision 115 (2015), 211-252.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. 2018. Mobilenetv2: Inverted residuals and linear bottlenecks. In
Proceedings of the IEEE conference on computer vision and pattern recognition.
4510-4520.

Ramprasaath R Selvaraju, Michael Cogswell, Abhishek Das, Ramakrishna Vedan-
tam, Devi Parikh, and Dhruv Batra. 2017. Grad-cam: Visual explanations from
deep networks via gradient-based localization. In Proceedings of the IEEE interna-
tional conference on computer vision. 618-626.

Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. 2016. Edge
computing: Vision and challenges. IEEE internet of things journal 3, 5 (2016),
637-646.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017. Axiomatic attribution
for deep networks. In International conference on machine learning. PMLR, 3319-
3328.

Mingxing Tan and Quoc Le. 2021. Efficientnetv2: Smaller models and faster
training. In International conference on machine learning. PMLR, 10096-10106.
Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung. 2016.
Branchynet: Fast inference via early exiting from deep neural networks. In 2016
23rd international conference on pattern recognition (ICPR). IEEE, 2464-2469.
Siyu Teng, Peng Deng, Yuchen Li, Bai Li, Xuemin Hu, Zhe Xuanyuan, Long Chen,
Yunfeng Ai, Lingxi Li, and Fei-Yue Wang. 2023. Path planning for autonomous
driving: The state of the art and perspectives. arXiv preprint arXiv:2303.09824
(2023).

Zhihong Tian, Wei Shi, Yuhang Wang, Chunsheng Zhu, Xiaojiang Du, Shen Su,
Yanbin Sun, and Nadra Guizani. 2019. Real-time lateral movement detection
based on evidence reasoning network for edge computing environment. IEEE
Transactions on Industrial Informatics 15, 7 (2019), 4285-4294.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre
Sablayrolles, and Hervé Jégou. 2021. Training data-efficient image transformers
& distillation through attention. In International conference on machine learning.
PMLR, 10347-10357.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. Advances in neural information processing systems 30 (2017).

Ruigi Wang, Hanyang Liu, Jiaming Qiu, Moran Xu, Roch Guérin, and Chenyang
Lu. 2023. Progressive Neural Compression for Adaptive Image Offloading under
Timing Constraints. In 2023 IEEE Real-Time Systems Symposium (RTSS). IEEE,
118-130.

Wikipedia. 2024. Worst-Case Execution Time. https://en.wikipedia.org/wiki/
Worst-case_execution_time.

Shixing Yu, Tianlong Chen, Jiayi Shen, Huan Yuan, Jianchao Tan, Sen Yang, Ji
Liu, and Zhangyang Wang. 2022. Unified visual transformer compression. arXiv
preprint arXiv:2203.08243 (2022).

Ziyang Zhang, Yang Zhao, Huan Li, Changyao Lin, and Jie Liu. 2024. DVFO:
Learning-Based DVFS for Energy-Efficient Edge-Cloud Collaborative Inference.
IEEE Transactions on Mobile Computing (2024).

Ziyang Zhang, Yang Zhao, and Jie Liu. 2023. Octopus: SLO-Aware Progressive
Inference Serving via Deep Reinforcement Learning in Multi-tenant Edge Cluster.
In International Conference on Service-Oriented Computing. Springer, 242-258.

[53

[54

[55

[56

]

]

]

]

SenSys 25, May 6-9, 2025, Irvine, CA, USA

Hengshuang Zhao, Jiaya Jia, and Vladlen Koltun. 2020. Exploring self-attention
for image recognition. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. 10076-10085.

Zhihe Zhao, Kai Wang, Neiwen Ling, and Guoliang Xing. 2021. Edgeml: An
automl framework for real-time deep learning on the edge. In Proceedings of the
international conference on internet-of-things design and implementation. 133-144.

Ray Y Zhong, Xun Xu, Eberhard Klotz, and Stephen T Newman. 2017. Intelligent
manufacturing in the context of industry 4.0: a review. Engineering 3, 5 (2017),
616-630.

Li Zhou, Hao Wen, Radu Teodorescu, and David HC Du. 2019. Distributing
deep neural networks with containerized partitions at the edge. In 2nd USENIX
Workshop on Hot Topics in Edge Computing (HotEdge 19).

Zhi Zhou, Xu Chen, En Li, Liekang Zeng, Ke Luo, and Junshan Zhang. 2019. Edge
intelligence: Paving the last mile of artificial intelligence with edge computing.
Proc. IEEE 107, 8 (2019), 1738-1762.

https://developer.nvidia.com/blog/gpu-pro-tip-cuda-7-streams-simplify-concurrency/
https://developer.nvidia.com/blog/gpu-pro-tip-cuda-7-streams-simplify-concurrency/
https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3080-3080ti/
https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3080-3080ti/
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-nano/product-development/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-nano/product-development/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-nano/product-development/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-series/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-series/
https://en.wikipedia.org/wiki/Worst-case_execution_time
https://en.wikipedia.org/wiki/Worst-case_execution_time

	Abstract
	1 Introduction
	2 Related Work
	3 Motivation
	3.1 Deficiencies of Existing Architectures
	3.2 Application of Explainable AI (XAI)

	4 E3 Overview
	5 Offline Training Phase
	5.1 E3 Neural Network (E3-Net)
	5.2 Offline Training Framework

	6 Online Control Phase
	6.1 Priority-Driven Queue and Task Launcher
	6.2 End-to-End Latency Estimation
	6.3 Online Execution Control Flow

	7 Evaluation
	7.1 Implementation and Setup
	7.2 System Overhead
	7.3 E3-Net Structure
	7.4 Accuracy and Deadline Satisfaction
	7.5 Edge Energy Consumption and Resource Utilization
	7.6 Compression and Transmission for Less Important Features
	7.7 Adaptability to Deadlines and Bandwidths
	7.8 Effect of Skewness Manipulation

	8 Conclusion
	Acknowledgments
	References

