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ABSTRACT
Deep neural networks (DNNs) are becoming extremely popular
in video analytics applications at the edge. However, compute-
intensive DNNs pose new challenges to achieve energy-efficient
DNN inference on resource-constrained edge devices. In this paper,
we propose E4, an energy-efficient DNN inference framework for
edge video analytics. First, E4 analyzes video frame complexity by
employing an attention-based cascade module that automatically
determines DNN exit points. Second, E4’s just-in-time (JIT) profiler
leverages coordinate descent search to co-optimize the CPU and
GPU clock frequencies for each layer before the DNN exit point.
Preliminary experimental results show that E4 outperforms exiting
methods in terms of power consumption and inference latency.
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1 INTRODUCTION
The continuously growing video size poses new challenges to edge
video analytics. On the one hand, due to cost and volume limita-
tions, edge devices have less computation resources than cloud
servers, so that they are not equipped to match the video analyt-
ics workload where DNNs are deployed. On the other hand, DNN
models are compute-intensive, requiring more power to achieve
high performance. This poses a nontrivial challenge for low-power
edge devices. DVFS (Dynamic Voltage and Frequency Scaling), as a
popular power management technology, aims to trade off power
consumption and performance by dynamically scaling CPU or GPU
voltage-frequency at runtime. Nonetheless, it is still a challenge to
implement a DVFS well-suited for edge video analytics to enable
energy-efficient DNN inference.
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Figure 1: The effects of CPU and GPU clock frequencies on
(a) inference latency (ms) and (b) power consumption (J). The
x-axis represents the GPU clock frequency, and the y-axis
represents the CPU clock frequency. We use Efficientnet-
B0 [2] on NVIDIA Xavier NX edge GPU with 8GB DRAM.

Despite prior works have specifically customized various learning-
based DVFS governors, the performance of tasks are inevitably
sacrificed while reducing power consumption. As a motivating
example, we use zTT [1], a state-of-the-art learning-based DVFS
governor, on an NVIDIA Jetson Xavier NX edge device to report the
impact of CPU and GPU frequencies on inference latency and power
consumption during executing the EfficientNet-B0 [2] DNN model.
As shown in Fig. 1, the higher the processor clock frequency, the lower
the inference latency and the higher the power consumption. For in-
stance, if we want to achieve 30fps video analytics (corresponding
to 30ms inference latency), the CPU and GPU clock frequencies
have to be adjusted to the highest level (corresponding to 1.9GHz
and 1.1GHz, respectively), the power consumption, unfortunately,
increases dramatically to 8.6W. It reveals that DVFS does not enable
low-latency and less power consumption at the same time, which
motivates us to design an efficient power management technology.

In this paper, we introduce E4, an energy-efficient DNN inference
framework for edge video analytics that integrates early-exit (𝑖 .𝑒 ., a
mechanism that enables early-exit at different points during DNN
inference), which can adapt to video frame complexity and DNN
model diversity.

2 SYSTEM AND PRELIMINARY EVALUATION
E4 tackles the problem of energy-efficient DNN inference for edge
video analytics. Fig. 2 depicts the overview of E4, which consists
of two phases: (1) Offline Phases has two components: (i) Accumu-
lated Feature Pooling and (ii) Attention-Based Early-Exit, which are
responsible for analyzing video frame complexity and determining
the DNN exit point respectively, as input to Just-In-Time Profiler in
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Figure 2: The overview of E4.
online phase. (2) Online Phase integrates two components: (i) Just-
In-Time Profiler and (ii) DVFS Governor. The former is responsible
for dynamically co-optimizing the CPU and GPU frequencies of
each layer before the DNN exit point, while the latter is used for dy-
namic frequency scaling. We have implemented E4 using Python 3.6
on two NVIDIA Jetson series of edge devices. EfficientNet-B0 [2] is
placed five DNN exit points and is pretrained on ImageNet dataset.
Furthermore, we use the ActivityNet-v1.3 video analytics dataset.
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Figure 3: Power consumption and inference latency compar-
ison of E4 against other learning-based DVFS methods.

We compare E4 with two learning-based DVFS methods, 𝑖 .𝑒 .,
zTT [1] and Ring-DVFS [3]. Since Ring-DVFS [3] is designed only
for embedded devices with CPUs, we extend it to edge devices with
CPU-GPU heterogeneous processors for fair comparison. We report
the performance of all methods in terms of power consumption
and inference latency. As shown in Fig. 3(a), we first examined
the video analytics task using EfficientNet-B0. Unsurprisingly, E4
consistently outperforms zTT [1] and Ring-DVFS [3]. Overall, E4 en-
hances energy-efficient compared to baselines, achieving 20%∼37%
energy-saving and 1.3×∼2.2× inference speedup, respectively. In-
tuitively, compared to zTT [3] and Ring-DVFS [3] which only uni-
laterally optimize the clock frequency of heterogeneous processors,
the performance improvement of E4 is attributed to DNN’s early-
exit mechanism, which significantly reduces computation cost and

power consumption by partial DNN inference. In addition, we find
that compared with edge devices with low computility, E4 brings
more significant performance improvement to edge devices with
high computility. For instance, the performance improvement of
Jetson AGX Orin, which has the highest computility, is 37% higher
on average than that of Jetson Nano with the lowest computility.
The results are attributed to the fact that high computility means a
larger frequency range, so that E4 has a larger optimization space.

3 CONCLUSION AND FUTURE WORK
This paper proposes E4, an energy-efficient DNN inference frame-
work for edge video analytics. E4 introduces two design knobs to
enable energy-efficient DNN inference: DNN’s early-exit mecha-
nism and a novel DVFS governor, which are responsible for deter-
mining the DNN exit point as well as optimal CPU and GPU clock
frequencies, respectively. Preliminary experimental results show
that E4 outperforms exiting methods in terms of power consump-
tion and inference latency. For the future work, our proposed E4
can be further combined with various existing model compression
techniques to achieve higher energy-efficient DNN inference.
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