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Abstract—Advances in Edge AI make it possible to achieve
inference deep learning for emerging applications, e.g., smart
transportation and smart city on the edge in real-time. Nowadays,
different industry companies have developed several edge AI
devices with various architectures. However, it is hard for
application users to justify how to choose the appropriate edge-
AI, due to the lack of benchmark testing results and testbeds
specifically used to evaluate the system performance for those
edge-AI systems. In this paper, we attempt to design a benchmark
test platform for the edge-AI devices and evaluate six mainstream
edge devices that are equipped with different computing powers
and AI chip architectures. Throughput, power consumption ratio,
and cost-effectiveness are chosen as the performance metrics
for the evaluation process. Three classic deep learning work-
loads: object detection, image classification, and natural language
processing are adopted with different batch sizes. The results
show that under different batch sizes, compared with traditional
edge devices, edge devices equipped with AI chips have out-
performance in throughput, power consumption ratio, and cost-
effectiveness by 134×, 57×, and 32×, respectively. From system
perspective, our work not only demonstrates the effective AI
capabilities of those edge AI devices, but also provide suggestions
for AI optimization at edge in details.

Index Terms—Edge AI, System Performance, Deep Learning

I. INTRODUCTION

Recent advances in the Internet of Things have driven more

and more applications, such as smart city and smart grid, etc.

to reality. In those environments, one of the new challenges

is how to make an intelligent decision in real-time with low

latency, close to the site at the edge.

To solve the problem, some companies, including NVIDIA,

Google, Intel, etc. have developed novel embedded devices by

integrating dedicated neural network processing units, or so-

called AI chips that empower the process and data analysis

capabilities even when there is no network connection. Run-

ning deep learning workloads on edge devices with AI chips

can reduce the inference delay to a few milliseconds or even

lower, and because there is no transmission delay, the entire

quality of service (QoS) is improved [1]. In addition, through

the local processing and analysis of data at the edge device,

there is no need to upload the data to the data center, and thus

provides security and privacy protection.

The edge AI devices/systems are very promising in many

applications, for instance, a smart camera with machine

learning capabilities can perform video analysis locally to

determine relevant video clips, and only send these clips

to the cloud, thereby reducing privacy risks. In addition,

edge AI devices can deploy deep learning workloads in

a low-power mode of several watts. With more and more

emerging demands for such AI paradigm, including object

detection in autonomous driving, multi-sensor data fusion

in smart agriculture, and machine vision in smart factories,

some companies also provide deep learning inference engines

such as NVIDIA’s TensorRT [2], Google’s Tensorflow Lite

[3], Microsoft’s ONNX [4] and Intel’s OpenVINO [5], as

software supporting suit on the system, to take full use of the

advantages of the specific chip designs. Although in general,

the embedded system with AI accelerator and inference engine

can improve the performance dramatically at the edge, for

different application scenarios, how to choose appropriate edge

computing ability to satisfy various constraints is still open and

hard for application developers.
Unlike the mature evaluation standards for the x86 ar-

chitecture server-side, the current edge devices are normally

based on the ARM architecture and have not yet established a

standard architecture and evaluation benchmark from the edge

AI perspective. On the other hand, due to the limited resource

constraints, it is not wise to just directly borrow those metrics

or standards for AI at the edge evaluation.
In this paper, we seek to evaluate the system performance

on edge devices for typical AI algorithms. Our contributions

are as follows:

• We set up an experimental environment to benefit the

evaluation process. Specifically, we choose six main-

stream edge AI devices, including Raspberry Pi, Nvidia’s

Jetson Nano/TX2/NX, Rockchip’s RK3399Pro, and Bit-

main’s SE5 to build an edge device performance testing

platform, and deploy three classic deep learning work-

loads, including object detection, image classification,

and natural language processing on each device. Through-

put, power consumption ratio, and cost-effectiveness are

used to evaluate the comprehensive performance for each

device.

• We conduct various experiments and the results show: 1)

For YOLO-v3 workloads, compared to traditional edge

devices such as Raspberry Pi, the average throughput
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of edge AI equipment equipped with a dedicated neu-

ral network processing unit under different batch sizes

can produce up to 373× performance improvement. 2)

Followed by ResNet-50, edge AI devices also have a

performance improvement of 27×. 3) In Tiny-BERT’s

benchmark test, we observe Edge AI devices only gain

2× improvement. 4) For the average throughput per unit

power consumption and unit price, edge AI devices also

have the standardized performance of 57× and 22×,

respectively. In conclusion, in general, edge devices with

AI abilities demonstrate the out-performance for deep

learning workloads, and at the same time, the system

proves to be cost-effective.

• We give an in-depth analysis from both application and

system levels for the explanation of the evaluation results.

Based on such, finally, considering the edge computing

and model efficiency, we provide recommendations for

the deployment of deep learning workloads on edge

devices to promote future research on edge AI.

The rest of the paper is organized as follows: Section II

introduces related work. Section III presents our experimental

platform, workload, and test metrics. Section IV shows the

results of our proposed benchmark test and provides per-

formance analysis. Section V provides recommendations for

model optimization and deployment. Finally, in Section VI,

we summarize our work.

II. RELATED WORK

To our knowledge, most of the current benchmark tests

mainly focus on cloud servers, which are few for edge devices.

Next, we will divide the existing benchmark tests into four

categories and discuss them separately.

AI Bench: AI Bench include both micro-benchmarks and

component and application benchmarks. Gao et al. [6] summa-

rized the differences on several previous works. Benchmarks

like MLPerf [7], AIIA DNN Benchmark [8], TBD [9] and

Dawnbench [10] focus on the component and application

benchmarks, while DNNMark [11] focus on the micro and

application benchmarks.

AIoT Bench: Luo et al. [12] proposed an AIoT benchmark

suite, which can evaluate the AI ability of mobile and em-

bedded devices. The AIoT Bench not only covers a variety

of application domains like image and speech recognition but

also include different edge devices, such as Android mobile

device and Raspberry Pi. BenchCouncil published a standard

specification of AIoT Bench [13], proposed a unified metric,

Valid Flops Per Second (VFPS), to evaluate the AI inference

accuracy and the speed of AI devices.

Edge AI Bench: Edge AI Bench [14] was proposed by the

BenchCouncil, which built an edge computing tested platform

and took an end-to-end view and focus on data distribution

and workload collaboration on clientside devices layer, edge

computing layer, and cloud servers layer. In 2019, a standard

specification of Edge AI Bench [15] was published to test the

metrics of inference stage and training stage of the above four

edge AI scenarios.

Edge Bench: Das et al. [16] provided a suite of performance

metrics as a new benchmark, then tested and compared two

platforms, Amazon AWS Greengrass and Microsoft Azure IoT

Edge, as well as cloud-only implementations available in their

respective cloud ecosystems, and analyzed the differences in

key types of workloads used in edge applications. Qirui Yang,

et al. [17] evaluated two representative edge workflows, an

IoT hub workflow, and a video analytics workflow, using

the workflow-level and function-level metrics reported by

EdgeBench, to illustrate the performance bottlenecks of the

edge systems and the edge workloads.

III. EXPERIMENTAL DESIGN: BACKGROUND AND

METHODOLOGY

In this section, we will first present related background, then

we discuss the testing system design methodology.

A. Background

The current computing engines in the AI chip field are

mainly divided into three types: Application Specific Pro-

cessor, Dedicated Hardware Accelerators, and Programming

Fabric. The AI chips in the edge devices we tested here belong

to the first two types. This section will introduce these AI

chips.

1) Application Specific Processor: The edge AI devices of

the NVIDIA series we tested are equipped with GPU with dif-

ferent architectures. Specifically, Jetson Nano is equipped with

128 CUDA cores GPU based on the Maxwell architecture.

Jetson TX2 is equipped with 256 CUDA cores GPU based

on the Pascal architecture. Xavier NX is equipped with 384

CUDA cores GPU and 48 Tensor cores based on the Volta

architecture. Fig.1 is an architectural diagram of NVIDIA

GPU most of the GPU’s core graphics functions are performed

inside the Graphics Processing Cluster (GPC), within the GPC

there are multiple Streaming Multiprocessor (SM) units.
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Fig. 1: NVIDIA GPU architecture.

2) Dedicated HardWare Accelerators: The NPU of

Rockchip RK3399Pro is a processing unit dedicated to neural

networks. Bitmain’s SE5 is equipped with the TPU chip

BM1684, it has a built-in tensor calculation module TPU. The
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TPU module contains 64 NPU arithmetic units. Each NPU

includes 16 Processing Element(PE), for a total of 1024 PE.

Fig.2 is the architecture diagram of the NPU [18]. The

computing units of the RK3399Pro’s NPU and SE5’s TPU

draw lessons from the systolic array structure [19] of Google’s

TPU. It realizes the direct transmission of calculation data and

weight data between each PE, and thus improves the overall

data reuse rate.
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Fig. 2: NPU architecture.

B. Experimental System Design

The purpose of our experiment is to compare existing

edge AI devices with traditional edge devices (such as Rasp-

berry Pi without dedicated hardware accelerators) in terms of

throughput, power consumption ratio, and cost-effectiveness

when deploying different deep learning workloads. We built

an edge AI testing platform and propose a set of benchmarks

to investigate the system-level performance.

As shown in Fig.3, the test platform consists of two parts:

edge device clusters and Web servers. The edge device cluster

is used as the test-bed, which consists of six edge devices,

including Raspberry Pi 4B, Nvidia Jetson Nano, Nvidia Jetson

TX2, Nvidia Xavier NX, Rockchip RK3399Pro, and Bitmain

SE5. We developed a test result display software on the Web

server, and the test commands can be easily sent out to edge

device remotely by scripts.

Table I lists the detailed parameters of various edge devices.

Specifically, the Raspberry Pi 4B is used as a traditional edge

device, and its test results are used as a baseline to compare

with other edge AI devices.

TABLE I: Performance parameters of edge devices

Computing
Edge Devices Capabilities Cost Memory Power

Raspberry Pi 4B - $55 4GB 3.5/7.5W
Nvidia Jetson Nano 0.47TFLOPS $99 4GB 5/10W
Nvidia Jetson TX2 1.33TFLOPS $249 8GB 7.5/15W
Nvidia Xavier NX 21TOPS $399 8GB 10/15W
Rockchip RK3399Pro 3TOPS $299 6GB 8W
Bitmain SE5 17.6TOPS $937 12GB 20W

C. Workloads

The workload we used includes three categories: object de-

tection, image classification, and machine question answering.

NVIDIA Jetson Nano

Rockchip RK3399Pro Bitmain SE5

Web server

Upload results

Raspberry  Pi  4B 

NVIDIA Jetson TX2 NVIDIA Xavier NX

Edge Cluster

Test scripts

Fig. 3: Test platform.

It covers image processing and natural language processing.

Table II lists the three models and datasets used in our

experiment. All the above models are pre-trained, and the input

is cut to the corresponding size.

Object Detection: Object detection is more difficult than

image classification. It needs to determine the position of all

objects in the image, and then assign a category label to

each of them. The best comprehensive object detection model

belongs to the YOLO series. Here we use YOLO-v3 [20] and

the most popular object detection dataset VOC2012 [21]. To

save test time, we randomly select 500 images in the validation

set.

Image Classification: Image classification labels each im-

age to indicate which category the object in the image belongs

to. We use the most representative ResNet-50 [22] network

and ImageNet [23] dataset. Because the dataset is too large,

we randomly selected 5000 images from it for testing.

Machine Question Answering: Machine question answer-

ing is a very important task in natural language processing.

It outputs the corresponding answers according to the given

questions. Because the BERT-base model is too large to run

on our edge nodes, we use a smaller version, that is, Tiny-

BERT [24]. We also adopted the SQuAD1.1 [25] dataset, the

one often used in intelligent Q&A tasks.

D. Metrics

To evaluate the performance of edge devices equipped with

different AI chips, throughput, power consumption ratios, and

cost-effectiveness are selected as indicators here.

Throughput: Throughput refers to the number of images or

texts inferred per unit time between the loading of the model

and the completion of the inference under the input of different

batch sizes by the edge device. The purpose of using batch

processing is to fully tap the parallel processing potential of

AI chips and maximize resource utilization.

203

Authorized licensed use limited to: Harbin Institute of Technology. Downloaded on September 11,2024 at 03:58:15 UTC from IEEE Xplore.  Restrictions apply. 



TABLE II: Benchmarking workloads

Workload Model name Input Type Model size Dataset Dataset size

Object Detection YOLO-v3 Image 98MB VOC2012 500
Image Classification ResNet-50 Image 236MB ImageNet 4000
Question Answering Tiny-BERT Text 17MB SQuAD1.1 12000

Power consumption ratios: We use the USB power meter

to test the power consumption of the edge device during the

inference period. The power consumption ratio is defined here

to measure the power consumption of the edge device under

different batch sizes. Power consumption ratio is defined as

the inference throughput per unit power.

Cost-effectiveness: The cost of edge devices is also not

negligible. Generally speaking, the higher the cost, the more

abundant computing resources the edge device has, but the

cost-effectiveness is not necessarily the highest. We defined

the throughput per unit price as an indicator to fairly compare

the cost-effectiveness for different edge devices.

IV. PERFORMANCE EVALUATION AND RESULT ANALYSIS

To fairly compare the throughput, power consumption ra-

tios, and cost-effectiveness indicators for edge devices, we

run a unified workload under the same framework and use

the same data set for inference. Each workload is repeatedly

measured 5 times under different batch sizes. Specifically, we

set the batch size to increase from 1 to 128. To alleviate the

bias, the maximum and minimum values are removed, and

then the average value is adopted as the test result.

A. Throughput

1) Object detection workload test: In the object detection

workload test, we take use of YOLO-v3 model based on the

Darknet framework to benchmark edge devices equipped with

AI chips, and 500 pictures in VOC2012 are taken as the test

set. Fig.4 presents the average throughput under different batch

sizes, and we have the following observations:

Traditional edge devices are not able to support delay-
sensitive workloads. Raspberry Pi without a neural network

processing unit can only reason about a single picture when

the batch size is 1 and does not have parallel processing

capabilities. Because it only uses CPU as the computing unit,

which results in very low throughput and no support for

real-time needs. Therefore, it is not recommended to deploy

delay-sensitive tasks on traditional edge devices. On the other

hand, edge devices equipped with dedicated neural network

processing units have significant performance improvements.

Specifically, even when the batch size is 1, the average

throughput is increased by 69 to 953×.

There is no direct linear relationship between computing
capabilities and throughput. Since the Raspberry Pi does not

have batch processing capabilities, here we use Nano with the

smallest computing resources as the baseline. We can observe

that compared to the baseline, the average throughput of other

edge devices under batch processing has increased by 2.4 to

13.8×. Surprisingly, the throughput of various edge AI devices

under batch processing has no obvious linear relationship

with the computing capabilities, as shown in Table I. We

think there are two reasons for such results: 1) The peak

computing capability of the AI chip does not mean the same

effectiveness of the computing capabilities in real scenarios; 2)

The hardware structure, relative software tools, and ecosystem,

and algorithm optimization will deeply affect the performance

even for the same deep learning workloads. Compared with

NVIDIA that has classic GPUs, the edge devices such as

RK3399Pro and SE5 which are equipped with ASIC-based

dedicated neural network processing units have shown more

powerful processing ability. This is because AI chip designers

customize the inference engine, which converts the native

model into a model format matching the specific AI chip

design to optimize the inference performance.

Batch size has little impact on the throughput for edge
devices. The reason is that object detection requires high

memory and computing resources. But in most cases, edge

devices are fully loaded even when the batch size is 1.

Therefore, increasing the batch size will not lead to higher

throughput. This also works for SE5 which has more memory

and computing resources than others: the throughput will not

increase after initial slow growth, as batch size increases.

Fig. 4: Throughput of YOLO-v3 workload.

2) Image classification test: In the image classification

workload benchmark test, we choose the ResNet-50 model,

based on the Tensorflow framework, with 4000 images in

ImageNet as the test set. Thanks to the residual module,
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ResNet-50 dramatically reduces the number of parameters and

thus leads to about one-third of the YOLO-v3 model scale,

or YOLO-v3 has 2.7× the number of network layers. Fig.5

illustrates the average throughput for different batch sizes

under ResNet-50. The observations are as follows.

The Raspberry Pi can perform ResNet-50 inference. Be-

cause it is a lighter model, it works on Raspberry Pi. However,

it has no dedicated neural network processing unit, the infer-

ence throughput is the lowest among all edge devices, and it

does not have real-time inference capability. This follows the

same reason as in the previous discussion.

All edge devices equipped with AI chips outperform tradi-
tional edge devices in image classification workloads. Specif-

ically, SE5 performed the best, and the average throughput

under different batch size is 83× that of Raspberry Pi. The

average throughput of Nano, which has the smallest computing

resources, is 4.5× that of Raspberry Pi. The results further

demonstrate the effectiveness of edge AI devices for reasoning

on deep learning workloads.

Batch size does not have a significant influence. Taking SE5

as an example, the throughput reaches its peak when the batch

size is 32, and then the throughput decreases sharply with

the increase of batch size. As discussed before, in addition to

the computing ability, memory also matters. The mismatch of

the computing capability and memory constraint may lead to

performance degradation, because of the long queuing delay.

In conclusion, edge devices equipped with dedicated neu-

ral network processing units have better performance than

general-purpose GPU devices. When the average throughput

is the same, the computing capabilities of RK3399Pro is only

one-seventh of NX. Under the same computing capabilities,

the average throughput of SE5 is 4.5× that of NX. All these

results demonstrate the advantages of ASIC-based dedicated

neural network processing units.

Fig. 5: Throughput of ResNet-50 workload.

3) Question answering workloads test: In machine question

answering workloads, pre-trained models such as BERT usu-

ally require high computing capabilities and cannot be inferred

on resource-constrained edge devices. Therefore, we use Tiny-

BERT for edge device inference workloads and use SQuAD1

which contains 12,000 intelligent question and answer texts.

We test the performance of edge devices under different batch

sizes. The following results are summarized from the test in

Fig.6:

There is no significant performance improvement for edge
AI devices. The average throughput of edge AI devices is 1.2×
to 3.5× that of Raspberry Pi. The reason for this result is that

most of the existing edge AI devices are oriented to the field of

object detection and image classification, and a large number

of convolution operations in the model network structure are

optimized, but they do not support natural language processing

models such as machine question answering well, which is

difficult to perform efficient reasoning on resource-constrained

edge devices.

Edge devices with more computing capabilities do not lead
to higher throughput. From the Fig.6, it can obviously observe

that the NVIDIA series of edge devices perform the best. Even

the Nano with the smallest computing capabilities has 1.5× the

throughput of SE5, although the former has only one-fifth of

the latter’s computing capabilities. This is because NVIDIA’s

general-purpose GPU has a relatively high degree of algorithm

support and can well support common algorithms in various

fields, even natural language processing. In contrast, dedicated

AI chips are only for application scenarios in specific fields.

For example, RK3399Pro and SE5 are only for target detection

and image classification and do not support models in the field

of natural language processing. This also shows from the side

that the existing dedicated AI chips lack versatility, and how

to build dedicated AI chips that can support natural language

processing models is a promising direction in the future.

Batch size has little effect. Like the previous benchmark

tests for the two image processing workloads, in the natural

language processing model, the increase in batch size has a

very limited impact on throughput changes. The throughput of

most edge devices is saturated when the batch size is 4. The

reason for this phenomenon is also because the size of the

model exceeds the limited memory and computing resources

of the edge device.

B. Power consumption ratio

Fig.7(a)-(c) plots the power consumption ratios for the

tested edge devices under different batch sizes for the three

workloads. The metric we use here is the inference throughput
per joule, which means the larger result of the power con-

sumption ratio, the better performance of the edge device. The

USB power meter is set up to measure the power consumption

for all edge devices. In addition, all edge devices turn on the

maximum power mode by default and turn off the graphical

interface to save memory consumption.

Fig.7(a) presents the results for the YOLO-v3 workload.

The performance of the average power consumption ratio is

RK3399Pro>NX>SE5>TX2>Nano>Raspberry Pi. The re-

sults indicate that the dedicated AI chips outperform gen-
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Fig. 6: Throughput of Tiny-BERT workload.

eral GPU devices and traditional edge devices. Specifically,

RK3399Pro has the best value, and the number of inferred

pictures per joule is 1.5, which is 144× that of Raspberry

Pi. Even the Nano, the edge AI device with the smallest

computing power, has a power consumption ratio of 48×
that of the Raspberry Pi. Not surprisingly, the Raspberry Pi

has the lowest power consumption ratio. Although the power

consumption is the lowest of all devices, Raspberry Pi does

not have an advantage in the power consumption ratio because

it has no dedicated neural network processing unit. The other

interesting observation is the batch size has little impact on

the power consumption ratio. The reason is the same as

before, i.e., even when the batch size is relatively small, the

memory has become saturated, which seriously affects the

batch processing capabilities of edge devices.

The results for ResNet-50 are shown in Fig.7(b). The

average power consumption ratio from high to low is

SE5>RK3399Pro>NX>TX2>Nano>Raspberry Pi. Among

them, SE5, which has the largest average power consumption

ratio, is 13.4× that of Raspberry Pi. Nano, which has the

smallest power consumption ratio among edge AI devices,

is also 5.6× the latter. This also demonstrates the powerful

processing and energy-saving abilities of dedicated AI chips.

This time, the power consumption ratio changes significantly

with the increase of batch size. This is because the model

structure of ResNet-50 is simpler than YOLO-v3, so it requires

less memory and computing resources, and thus the batch size

will affect the performance.

Fig.7(c) illustrates the results for Tiny-BERT work-

loads under different batch sizes. Unlike the previous

two image processing workloads, the performance is

NX>TX2>Nano>RK3399Pro>Raspberry Pi>SE5. The edge

devices of the NVIDIA series equipped with general-purpose

GPU perform the best, and the power consumption ratio is

much higher than that of edge devices equipped with dedicated

AI chips. Specifically, the average power consumption ratio of

NX is 8.7× and 14.6× that of 3399Pro and SE5, respectively.

What surprised us more is that the power consumption ratio of

the SE5 with the highest computing power is only half that of

the Raspberry Pi. The reason is: edge devices equipped with

dedicated AI chips do not support workloads in the field of

natural language processing, resulting in performance similar

to ordinary edge devices.

C. Cost

Generally speaking, the cost of edge devices is directly

proportional to the computing capability. However, unlike

traditional PC system that has only one common architec-

ture, in the emerging new edge AI field, different kind of

specific accelerators or architectures for different AI model

optimization are designed. That’s why although in traditional

system performance evaluation metrics, the cost is rarely

considered. Here, we think it is an important metric for AI-

needed applications. Similar to the power benchmark test, to

fairly compare the advantages and disadvantages of the edge

devices in terms of cost, we normalize the cost and use the

throughput per unit price as the measurement metric. Fig.8(a)-

(c) presents three types of cost-effectiveness for edge devices

under different batch sizes.

Fig.8(a) shows the results under the YOLO-v3 workload.

The order of cost-effectiveness from high to low is

RK3399Pro>SE5>NX>Nano>TX2>Raspberry Pi.

RK3399Pro has the best performance in terms of cost-

effectiveness, i.e., 2.7× to 148× that of other devices; SE5 is

the second. The results indicate that the dedicated AI chips

are extremely cost-effective. We also notice that the change

in batch size has almost no impact on the performance.

For ResNet-50, the performance results in Fig.8(b) keep the

same order as for YOLO-v3, This is because the network

model structures of these two workloads are similar, and

both contain a large number of convolution operations, which

can essentially be converted to general matrix multiplication

(GEMM). The main difference is that the complexity of the

model and the required computing power are different. This

is why the performance will decrease with the increase of

batch size, since that the memory and computing resources

of edge devices will reach saturation at some point. When

it reaches saturation, continuing to increase the batch size at

this time will cause additional waiting delays. Here, the cost-

effectiveness of NVIDIA edge devices with general-purpose

GPUs is still not as good as RK3399Pro and SE5 that integrate

dedicated AI chips.

Interestingly, as shown for Tiny-BERT in Fig.8(c), Nano’s

cost-effectiveness is the best, followed by Raspberry Pi; and

there is no direct relationship between rich computing re-

sources and the cost-effectiveness for the other four edge

devices. Specifically, SE5 has the highest unit price but

performs the worst. RK3399pro, NX and TX2 seem also

to have a similar situation. We attempt to explain from the

following two features: unit price and algorithm support. On

the one hand, although Nano and Raspberry Pi do not have

rich computing resources compared with other edge devices,
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(a) YOLO-v3 (b) ResNet-50 (c) Tiny-BERT

Fig. 7: Power consumption ratio of different workloads.

(a) YOLO-v3 (b) ResNet-50 (c) Tiny-BERT

Fig. 8: Cost-effectiveness of different workloads.

their low price makes up for the shortcomings of insufficient

computing power and can make a good trade-off between

unit price and performance. On the contrary, the unit price of

RK3399Pro and SE5 with dedicated AI chips is expensive,

5.5× to 17× that of Raspberry Pi. More importantly, the

algorithm support of these two devices is relatively narrow:-

currently only supports workloads in the image processing

field, therefore, it has no advantage in the cost-effectiveness

test for the natural language processing workloads.

V. RECOMMENDATIONS

From the test results we can observed that traditional deep

learning workloads have a large amount of calculation due

to the complexity of the model structure, and deployment

to resource-constrained edge devices will cause high latency

and power consumption. In order to enable edge devices to

deploy real-time inference deep learning workloads, we give

suggestions from the perspective of edge computing and model

lightweighting.

A. Edge Computing

Combining Edge AI [26] with edge computing is a feasible

method. Edge computing [27], as an extension of cloud

computing, deploys edge servers on the side close to the

source of data, and meets the high computing and low latency

requirements of deep learning workloads on edge devices

through “cloud-edge collaboration” with cloud servers to im-

proves User’s QoS. Even if complex deep learning workloads

are deployed on edge devices, we can use edge computing

to offload local models to cloud servers, use the powerful

computing capabilities of cloud servers to complete real-time

inferences and return the results to edge devices, while greatly

reducing power consumption of the edge device.

B. Model Lightweighting

Model compression and acceleration [28] [29] [30] are two

different topics. The former focuses on reducing the amount of

network parameters, while the latter focuses on reducing the

computational complexity and improving the parallel ability.

We think the model compression and acceleration can be

divided into three levels:

• Algorithm layer compression acceleration: This dimen-

sion is mainly in the algorithm application layer, which

is also the work scope of most Algorithm Engineers. It

mainly includes structure optimization, model quantifica-

tion and model distillation.

• Frame layer acceleration: This dimension is mainly

in the algorithm framework layer. For example, TF-

Lite, NCNN, MNN and so on. It mainly includes com-

piler optimization, cache optimization, sparse storage

and computation, NEON instruction application, operator

optimization and so on.
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• Hardware layer acceleration: This dimension is mainly

in the AI hardware chip layer. At present, there are GPU,

FPGA, ASIC and other solutions, and various TPU and

NPU are ASIC solutions. Through chip customization for

deep learning, the running speed of the model is greatly

accelerated.

VI. CONCLUSIONS

In this work, we build a testing platform for systematically

evaluate the AI-enabled edge devices. We choose six main-

stream edge AI devices that are off-the-shelf in the market for

the benchmarking purpose. Experimental results show that un-

der the workload of object detection and image classification,

compared with traditional edge devices, edge devices equipped

with AI chips can dramatically improve the performance,

e.g., throughput, power consumption ratio, and cost efficiency.

Unfortunately, existing edge AI devices have not yet provided

enough support for natural language processing workloads:-

the performance improvement is limited. These results can

be used to direct our future research, such as how to design

the edge-cloud AI binding system architecture to optimize the

performance for different applications, or where the edge AI

should go, generic or specific? We leave those thoughts as our

future work.
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