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Abstract. Deep neural network (DNN) inference service at the edge is
promising, but it is still non-trivial to achieve high-throughput for multi-
DNN model deployment on resource-constrained edge devices. Further-
more, an edge inference service system must respond to requests with
bounded latency to maintain a consistent service-level objective (SLO).
To address these challenges, we propose Octopus, a flexible and adaptive
SLO-aware progressive inference scheduling framework to support both
computer vision (CV) and natural language processing (NLP) DNN mod-
els on a multi-tenant heterogeneous edge cluster. Our deep reinforcement
learning-based scheduler can automatically determine the optimal joint
configuration of 1) DNN batch size, 2) DNN model exit point, and 3)
edge node dispatching for each inference request to maximize the overall
throughput of edge clusters. We evaluate Octopus using representative
CV and NLP DNN models on an edge cluster with various heterogeneous
devices. Our extensive experiments reveal that Octopus is adaptive to
various requests and dynamic networks, achieving up to a 3.3x improve-
ment in overall throughput compared to state-of-the-art schemes while
satisfying soft SLO and maintaining high inference accuracy.

Keywords: Edge computing - Progressive inference - Deep
reinforcement learning - Multi-tenant

1 Introduction

Recent advancements in deep learning and Internet of Things (IoT) have facil-
itated the development of various edge intelligence applications [25], such as
autonomous driving [20] and augmented reality [14]. These applications utilize
deep neural network (DNN) models to perform various complex tasks. However,
it is non-trivial to deploy compute-intensive DNN models to IoT devices due to
limited resources. In this case, edge computing [18] has emerged as a promising
paradigm for providing low-latency inference services by deploying models to
edge devices, which are in closer proximity to users than cloud servers [1].
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As shown in Fig. 1, an edge inference service usually involves a multi-tenant
environment [6] comprised of various IoT devices. These IoT devices send their
inference requests to a nearby edge device, or in our case an edge cluster, on which
computing resources are allocated among multiple tenants and DNN models.
Existing edge inference serving systems adopt a wide range of approaches to
process as many requests as possible, i.e., achieve high throughput on resource-
constrained edge devices. For instance, DeepRT [23] adopts batching to provide
soft real-time inference services. Edgent [11] leverages multi-exit DNN models
for collaborative inference. MAEL [17] uses cross-processor scheduling to satisfy
service level objectives (SLO) of various requests. Indeed, a high-throughput edge
inference serving system needs to trade-off among inference accuracy, latency
and throughput. However, none of the works mentioned above targets inference
serving on an edge cluster, which poses new challenges in optimizing in multi-
dimensional search spaces.

An edge cluster equipped with GPUs located close to user devices can be used
to improve throughput of DNN inference serving. Furthermore, edge inference
services must be flexible to accommodate SLO budget, heterogeneous hardware
accelerator, and inference accuracy requirement. Thus, for an SLO-aware infer-
ence serving system on an edge cluster, the scheduler should be capable of dis-
patching inference requests from IoT devices to appropriate edge nodes, where
multiple DNN models are deployed, to satisfy different SLOs while maintaining
high inference accuracy.
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Fig. 1. Deep learning (DL) inference serving on a multi-tenant edge cluster.

To address these challenges, we propose Octopus, the first progressive infer-
ence serving system designed for a multi-tenant edge cluster, which aims at
maximizing the overall throughput of the edge cluster while satisfying soft SLO
budget and inference accuracy. Octopus adopts the multi-exit DNN inference
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approach [19], i.e., progressive inference, a mechanism that enables early exit
at different points during DNN inference [10], given the request budget. The
scheduler in Octopus utilizes deep reinforcement learning to efficiently schedule
resources for inference requests. More precisely, Octopus automatically learns
the optimal joint configuration of exit point, batch size, and node dispatching, in
order to provide high-throughput progressive inference serving while taking into
account SLO and accuracy budget. Additionally, the latency predictor in Octo-
pus leverages an attention-based long short-term memory (LSTM) to achieve
SLO awareness, and ensure bounded response latency for inference requests.
Overall, this paper makes the following contributions:

— We propose a novel multi-exit DNN-based progressive edge inference serving
system, aiming to maximize the overall throughput of a heterogeneous edge
cluster while satisfying SLO budget and maintaining high accuracy.

— We design a deep reinforcement learning-based scheduler that automatically
co-optimizes a three-dimensional search space with batch size, exit point,
and node dispatching to provide high-throughput inference services for multi-
tenant edge intelligence applications.

— We implement a system prototype of Octopus on a heterogeneous edge cluster,
deploying three representative CV and NLP DNN models. Extensive evalua-
tions show that Octopus achieves up to 3.3% in overall throughput compared
to state-of-the-art schemes, while maintaining high inference accuracy and
low SLO violation rate below 5%.

The rest of this paper is organized as follows: Sect. 2 introduces related work.
Section 3 illustrates the system architecture and formulates the optimization
problem. Section 4 proposes an SLO-aware latency predictor. Section 5 details the
design of the learning-based scheduler. Section 6 provides the system prototype
and performance comparison. Section 7 summarizes our work.

2 Related Work

Edge inference services have recently attracted great attention among researchers.
Prior work utilizes multi-exit DNN to efficiently share limited resources on edge
devices. For instance, Delen [12] adopts multi-exit DNN to adaptively control infer-
ence requests with SLO, accuracy, and energy budget. Edgent [11] leverages an
early exit mechanism to achieves collaborative inference between end devices and
edge servers, balancing latency and accuracy. MAMO [3] proposes a bidirectional
dynamic programming approach to determine the optimal exit point, and utilizes
deep reinforcement learning to co-optimize resource allocation and model par-
titioning. However, none of these works provides SLO budget. In practice, edge
devices must respond to inference requests within bounded latency, so as to pro-
vide QoS consistent with SLO budget.

Prior work also proposes various scheduling algorithms for single-device edge
inference services. For instance, DeepRT [23] proposes a scheduler based on
earliest-deadline-first (EDF) [4], which aims to provide soft real-time inference
services. Jellyfish [16] leverages dynamic programming that adapt input data and
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DNNs, so as to provide soft SLOs while maintaining high accuracy. HiITDL [22]
proposes a latency-based performance model that considers resource availability,
DNN exit points, and cross-DNN interference, in order to improve throughput
while satisfying SLO. However, these works only provide limited inference ser-
vices due to the lack of an efficient resource sharing.

Additionally, some research focus on scheduling heterogeneous multiproces-
sor to provide on-device edge inference. For instance, BlastNet [13] introduces
a priority-driven algorithm for block-level scheduling across CPU-GPU proces-
sors. Similarly, Band [9] schedules the subgraphs of DNN model on heterogeneous
multiprocessor to coordinate multi-DNN inference. MAEL [17] proposes a het-
erogeneous multiprocessor-aware scheduling strategy for edge devices equipped
with CPU, GPU, and DSP, using a minimum-average-expected-latency algo-
rithm to satisfy SLO while reducing energy consumption. Note that these works
are orthogonal to Octopus, which can be used to further improve throughput.

3 System Architecture and Problem Formulation

In this section, we illustrate the workflow procedure of our proposed progressive
inference serving framework for multi-tenant edge cluster, and formulate the
scheduling problem as an optimization problem.

3.1 System Overview

Figure 2 shows an overview of the proposed Octopus system, which comprises
multiple clients and an edge cluster with heterogeneous devices. When multiple
clients @ send batch inference requests to the edge cluster via a network, the
monitor @ in Octopus generates configuration files that specify the SLO budget
and accuracy threshold for each request. Meanwhile, the latency predictor ® uti-
lizes historical data to estimate the end-to-end latency of subsequent requests,
thereby achieving SLO awareness (Sect. 4). The learning-based scheduler @ then
learns the optimal batch size, exit point, and node dispatching for each request
based on the collected request information and predicted latency (Sect. 5). Next,
each edge node ® deploys multi-exit DNN models using the joint optimal con-
figuration from the scheduler. Finally, the inference results ® are sent back to
clients, thus completing an end-to-end inference request.
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Fig. 2. Overview of Octopus system architecture.
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3.2 Problem Formulation

Let K = {1,2,..., K} represent the set of inference requests. Each request k € K
has its input data size Dy, network bandwidth By, expected accuracy &, request
rate 75, and SLO budget si. The edge cluster comprises multiple heterogeneous
edge nodes, denoted as N = {1,2,..., N}, The computility (i.e., floating point
operations per second) and hardware clock frequency of each edge node n € N are
represented by C,, and f,,, respectively. The higher the hardware clock frequency,
the bigger the computility. An ensemble of domain-specific DNN models (such as
CV and NLP) forms a DNN Zoo, denoted as M = {1,2,..., M}. The inference
latency of each DNN model m € M is related to the batch size b and exit point g.
The set of batch sizes is denoted as B = {1,2,..., B}. The larger the batch size,
the higher the throughput. The set of exit points for a DNN model is denoted
as Q = {1,2,...,Q}. Each exit point ¢(¢ € Q) is sorted in ascending order
according to inference latency. Note that the later the exit point, the higher the
latency and the accuracy.

The end-to-end latency of the i-th request k& comprises network latency and
inference latency. More precisely, network latency is modeled as a function of
input data size Dy and network bandwidth Bj. Inference latency is related to
the input data size Dy, the computility C,, and the clock frequency f,, of each
edge node, and the batch size by, which can be formulated as:

Dy, Dy - C,
, 1
By frx-by S

Inspired by [16], we introduce a binary decision variable 1y . m.q € {0,1} to
indicate whether a request k is dispatched to DNN m with exit point ¢ and batch
size b deployed on edge node n. We first model the throughput on a single edge
node. Each edge node deploys multiple DNN models with varying exit points
and batch sizes. The throughput of each node processing K inference requests
can be formulated as:

tk (b7 n,m, Q) =

K
Tpsk(ba n,m, q) = : "/)b,n,m,qv (2)

B ZK tk (b> n,m, Q)

The goal of Octopus is to maximize the overall throughput of the edge cluster
while satisfying the SLO budget and maintaining high accuracy for each inference
request. Based on the throughput of an individual edge node as defined in Eq. (2),
the scheduling problem can be formulated as:

H}gn 25:1 TPSk (ba n,m, q) c Tk wb,n,m,q (3)

s.t. Zszl Zizvzl er\r/le ZqQ:l Vbnm,q =1L, VEk € K
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Tk - Vb n,m,q < TDSK(b,n,m,q),Vk € K
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where Eq. (3) defines the maximizing overall throughput as the optimization
objective. Equation (4) ensures that each inference request can only be dis-
patched to a single edge node. IT A (b,n,m,q) is the inference-to-accuracy of
request k on DNN m, deployed on node n with exit point ¢. Equation (5) spec-
ifies that IT Ay (b,n,m,q) is higher than the accuracy budget &. Equation (6)
enforces latency budget, that is, the end-to-end latency should not exceed the
SLO budget. Equation (7) ensures that each edge node has enough resources
to support batch inference. Equation (8) illustrates that the dispatch of request
is a binary variable, meaning that a DNN model cannot be partitioned for dis-
tributed inference. Equation (9) considers the limited memory resources of edge
nodes. Since multi-exit DNN models require intensive memory for inference [8], it
is necessary to load the weight matrix ModelSize(m,), the intermediate feature
matrix PeakSize(my), and the buffer size BufSize(mg) into memory to speed
up inference. The total memory requirement should not exceed the available
memory of the edge device Memory?, ;.

4 SLO-Aware Latency Predictor

Octopus predicts the latency of the current batch requests based on the pre-
vious batches. Prior work [5] has revealed that DNN inference is highly pre-
dictable. Importantly, there is a highly correlated temporal relationship between
consecutive requests, such as video streams for object monitoring. Attention
mechanism [21] and long short-term memory (LSTM) [7] have shown impressive
effectiveness in predicting long- and short-term time series data, respectively.
Inspired by [24], we adopt an attention-based LSTM as latency predictor, to
achieve SLO-awareness for batch requests. The latency predictor aims to mini-
mize the error between the predicted and actual latency for batch requests:

min L(Ly, Lp) = min 3, [(F — 1£)?] (10)
st L= fGEN 0N et ) o) (11)

where L! is the actual latency of batch requests with batch size b at time slot
t, and Iig is the corresponding predicted latency. If and lAlt) represent the actual
and predicted latency of the b-th inference request in the batch requests, respec-
tively. o is the LSTM parameter, and N represents the number of previous batch
requests used in the prediction network f(-).

As shown in Fig. 3, the attention-based LSTM-based latency predictor is
composed of an encoder, an attention module and a decoder.

Encoder. The encoder is implemented using a two-layer LSTM. To accurately
predict the latency of the b-th request in the current batch requests, the encoder
takes as input the latency corresponding to the b-th request in the past IV batches
of requests, and encodes it into a feature map {Y;}:

Y= f(Ye, Ly) (12)
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Fig. 3. Overview of the attention-based LSTM for latency predictor.

where f(-,-) denotes the LSTM network.

Attention Module. We use an attention module with a fully-connected layer
to evaluate the importance of encoded feature maps. The weight of the feature
map generated by the attention module can be formulated as:

e = Wi tanh(Wa[Y; en—1;hn—1]) (13)

B(Attn), = L(Mt) (14)

¢ exp (1)
where [Y;¢(N —1); h(N — 1)] represents the encoder output Y, the state vector
c(N — 1) of decoder unit, and the hidden state vector of decoder AN —1). Wy
and Wy are the weights that need to be optimized. S(Attn), is the normalized
weight of different feature maps. The context vector ¢(N —1) is used to evaluate
the contribution of each feature map.

Decoder. The decoder is implemented using two fully-connected layers and an
LSTM, which processes the context vectors.

5 Learning-Based Scheduler

Complexity Analysis: Octopus aims to find the optimal batch size, exit point
and node assignment for each inference request to maximize the overall through-
put of the edge cluster. The challenge with the three-dimensional scheduling
space for Octopus is that scheduling decisions are affected by several interde-
pendent variables. More precisely, the batch size and exit point depend on the
computing resources of the allocated nodes to ensure SLO and accuracy. To rep-
resent the search space, suppose @ is the number of exit points in a DNN model,
M is the number of DNN models to serve, and B is the number of batch sizes
on each multi-exit DNN model. Therefore, there are a total of BM Q™ possible
options to configure M DNN models. Since there are N edge nodes in an edge
cluster, the complexity of the search space is as follows:

Total Search Space = O(NQM BM) (15)
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Solving such a huge search space is non-trivial. Exhaustively search and
heuristic-based approaches are unable to handle the problem in polynomial time.
In contrast, deep reinforcement learning (DRL) considers the impact of current
decisions on future outcomes by using Markov decision process (MDP), and
learns the optimal policy to maximize cumulative returns, enabling it to be
suitable for complex decision problems in multi-dimensional search spaces. Con-
sequently, we propose leveraging DRL to automatically learn the optimal joint
configuration of batch size, exit point, and node dispatching.

Markov Decision Process. In DRL, the agent continuously interacts with the
environment and makes decisions via a policy, which is achieved using Markov
decision process (MDP). Consequently, we first transform the scheduling problem
in Eq. (3) into an MDP. An MDP can be represented as a three-tuple: state space
S, action space A and reward function r, which are described as follows:

— State: At each scheduling time slot ¢, the agent in DRL constructs a state
st(s¢ € S) to periodically collect the information of inference requests. We
define the state s; using four components: (I) Input data size D;. (II) Band-
width By. (III) Request rate 75. (IV) Predicted latency IA/{)VH.

— Action: The action represents a decision made by the agent based on the
current state. We define the action as the choosing of the appropriate batch
size b, exit point ¢, and edge node n for each multi-exit DNN model, which
can be denoted as a; = (b,q, n).

— Reward: The agent aims to maximize the cumulative expected reward

E [Ef:o vtn}, where v € [0,1] is a discount factor. r; denotes the imme-

diate reward obtained when the agent executes inference after choosing the
appropriate batch size, exit point, and edge node. We define the reward func-
tion r; using the accuracy 7 and SLO violation rate si, based on Eq. (3):

Tt (57 77) = ZiLV:l TPSk (ba n,m, q) c Tk ¢b,n,m,q (16)

1+ e*f/’ﬂ

Maximum Entropy Reinforcement Learning-Based Scheduling Algo-
rithm. Our proposed scheduling algorithm is based on the discrete soft Actor-
Critic (SAC) [2] framework. SAC is maximum entropy DRL algorithm, which
aims to maximize both the reward and the entropy of the visited states, enabling
the agent in DRL to learn more near-optimal actions and accelerating the learn-
ing process. Meanwhile, it also allows the agent to explore a larger search space
and enhances the robustness of the system.

The policy 7 is the function that determines the next action chosen by the
agent based on current state. The optimal strategy 7* can be formulated as:

= argmax 33 o By, a,)mpn [F(5t:0) + aH(m(- | 1)) (17)

where p, is the trace distribution generated by the policy 7. « is the temperature
parameter that balances the relative importance of entropy and reward. H (7 (- |
s¢)) = —logm(- | s¢) denotes the entropy of policy m with state s;.
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We utilize soft policy iteration [2] to achieve the optimal policy, which con-
sists of soft policy evaluation and soft policy improvement. These two steps are
alternated during the training process.

Soft policy evaluation involves the calculation of the policy value, that is,
soft state value function (V-function) and soft action-state value function (Q-
function). The discrete V-function with entropy is defined as:

V (s1) =7 (s1)" [Q (1) — alog (m (51))] (18)
We then obtain the soft Q-function using the soft Bellman equation:
T7Q (st,a1) = 7 (se,20) + Vs, ymp [V (Se41))] (19)

where 7 is the modified Bellman backup operator. Based on the soft Bellman
equation in Eq. (19), soft policy evaluation can converge to the soft Q-function
of the optimal policy 7* under limited state and action spaces.

We update the policy using the following soft policy improvement:

exp (LQm1 (sy,+))
7/ Told (St)

Tnew = arg ml% Dk (7'('/ ( ‘ St) || (20)
e

where Dk, denotes the KL divergence, and Z7°4(s;) is the partition function.

In our approach, we utilize two Q-networks, and for each training step, we
select the network with the lower Q-value, in order to alleviate the overesti-
mation of Q-values. The loss function of any Q-network L£g(8) is calculated by
minimizing the soft Bellman residual in Eq. (19):

1
‘C’Q (0) =F se,at)~Dary1~mo(|St41 [7(Q0(St7at) - (T(Shat)
( ) +1vme (lse1) (21)

+y(min Qo (41, ar41) — alogr(ar | st41))))?]

where D is the replay buffer that used to store the collected historical traces. To
facilitate more stable training, we utilize two target Q-networks ng (=12
that correspond to the two Q-networks used to calculate Q-values.

The loss function of policy L, (p) is calculated by minimizing the KL diver-
gence in Eq. (20):

Lr(p) = Egop |7 (1) [alog (my (s1) — Qo (St)]} (22)

Note that it is critical to choose the appropriate temperature parameter a.
For instance, in states where the optimal action is highly uncertain, the impor-
tance of entropy should be increased. As a reference [2], the loss function of the
temperature parameter L, is formulated as:

Lo =mi(s)" [—a(log(me(s)) + H)] (23)

where H is a constant vector. More precisely, when the entropy of the policy
is lower than H, the loss function L£(a) will increase the value of «, thereby
enhancing the importance of entropy during training.
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Algorithm 1 provides an overview of our proposed learning-based scheduling
search algorithm. We take as input the request information collected by the pro-
filer and the latency predicted by the latency predictor. Before training, we first
initialize all network weights and the replay buffer (line 1~3). For each training
episode, we take the current request as the initial state of the environment (line
5). At each environment step, we select an action a; (line 7) based on the current
policy m,(ay | s¢), and execute the action while receiving a reward (line 8). Next,
the scheduler feeds back the decisions made by the DRL to the corresponding
edge nodes for progressive inference (line 9). When inference is complete, DRL
updates the environment state (line 10) while storing the current trajectory in
the replay buffer (line 11). For each gradient step, we calculate the soft state
value and @ value by random sampling (line 1/~15), and update all network
weights and the temperature parameter (line 16~19). As this process repeats,
the learning-based algorithm eventually converges on the optimal policy that
maximizes the overall throughput of the edge cluster.

Algorithm 1: Learning-based scheduling search algorithm.

Input : set of requests K = {1,2,..., K}, information per request k with
input data size Dy, bandwidth By, predicted latency I:év and request
rate 7, target budget with accuracy &, and SLO si

Output: the optimal schedule {bx, ng, qr} for each request k

1 Initialize actor network 7(s | ¢) with ¢ and critic network Qy,, Qo, with 6; and

02, respectively

2 Initialize target network le,ngz 0, — 01, Oy — 65
3 Initialize an empty replay buffer D « ()
4 for each epoch e =1 — FE do

5 Generate current request k(Dy, By, taug, ﬁév) with target budget {7k, sk} as
the initial state of the environment s1
6 for each environment stept =1— T do
7 Sample action a; = s¢(bk, Nk, qi) ~ Tp(ar | s¢)
8 Execute action a; and obtain instant reward r; (a; | s¢) using Eq. (16)
9 Execute progressive inference with action at(bx, 1k, gx)
10 Update state s; «— s¢y1
11 Store the transition (s¢, at,7(st,at), St+1) in the replay buffer D
12 end
13 for each gradient step g =1 — G do
14 Sample transition from the environment s;+1 ~ p(si+1 | s¢,at)
15 Calculate the soft state value V' (s¢) with policy 7 using Eq. (18) and
the soft Q-function Q(s¢,a¢) using Eq. (19), respectively
16 Update critic network weights 6; for i € {1,2} using Eq. (21)
17 Update actor network weight ¢ using Eq. (22)
18 Update temperature parameter « using Eq. (23)
19 Update target network weights le — AQq, + (1 — )\)le for i € {1,2}
20 end

21 end
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6 Prototype and Performance Evaluation

6.1 Implementation

Octopus Prototype. Octopus is implemented using PyTorch. We use an
NVIDIA Xavier NX as the master node to receive inference requests from multi-
ple clients. Additionally, we employ three heterogeneous edge devices as nodes to
execute inference for specific multi-exit DNN models. The detailed configurations
of each edge device are detailed in Table 1. For offline training of Algorithm 1,
we use an edge server equipped with four NVIDIA GeForce GTX 3080 GPUs,
using a mini-batch size of 128 for 2000 epochs. All networks are trained using
the Adam optimizer with a learning rate of 1073. Each network comprises a
two-layer ReLU neural network with 64 and 32 hidden units, respectively. The
size of the replay buffer is fixed at 10°. The trained learning-based scheduler is
ultimately deployed online on the master node.

Table 1. The detailed configurations of edge devices.

Edge Device CPU GPU Memory | Computility
NVIDIA Jetson Nano | ARM Cortex-A57 | 128-core Maxwell | 4 GB 0.47TFLOPS
NVIDIA Jetson TX2 | ARM Cortex-A57 | 256-core Pascal |8GB 1.33TFLOPS
NVIDIA Xavier NX | Carmel ARMv8.2 | 384-core Volta 8GB 21TOPS

DNN Zoo and Datasets. Three domain-specific DNN models are used to pro-
cess image and speech data, as summarized in Table 2. We adopt the BranchyNet
framework [19], which supports multi-exit DNN training with five early exit
points per DNN model. The DNN Zoo, comprising these multi-exit DNN mod-
els, is deployed on each edge node.

Table 2. The specific information for inference requests.

Request Type DNN Model Dataset SLO(ms) | Accuracy(%)
Object Detection YOLOv4-Tiny | VOC-2012 50 64.31
Semantic Segmentation EfficientViT-B1 | Cityscapes |75 81.65
Natural Language Processing | BERT-Base SQuAD v1.1 |25 79.52

Baselines. We compare Octopus with three baselines: DeepRT [23] develops a
soft real-time scheduler for single edge device that leverages earliest-deadline-
first (EDF) [4] to schedule batch requests. DINA [15] utilizes matching theory
to achieve distributed inference with adaptive DNN partitioning and offloading.
Edgent [11] proposes a regression-based predictive model for multi-exit DNN
inference through device-edge synergy. Since our proposed Octopus is the first
framework for multi-tenant progressive inference serving on heterogeneous edge
clusters, we scale three baselines to the edge cluster in Table 1 and compare the
sum of their throughput on each edge node, for a fair comparison.
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Workloads and Network. We synthesize workloads using the three datasets
detailed in Table2, and use three Jetson Nano edge devices as multi-clients
to generate inference requests based on these synthetic workloads. Note that
inference requests arrive randomly to simulate the real-world applications, and
each client always submits inference requests for a specific DNN model. The
default request rate is fixed at 30rps, unless otherwise specified. Besides, we
use WiF'i to connect clients and edge devices, with available bandwidth ranging
from 2 Mbps to 24 Mbps to simulate fluctuations in dynamic network conditions.

6.2 End-to-End Performance

Overall Throughput Improvement. As shown in Fig.4(a), the overall
throughput of Octopus, as detailed in Table2, consistently outperforms the
baselines. More precisely, Octopus achieves 1.3x—-3.3X improvement in over-
all throughput. Although DeepRT utilizes batching to improve throughput, it
suffers from resource-constrained edge devices and high memory overhead asso-
ciated with executing entire DNN models. As a result, its throughput is lower
than those of the two multi-exit DNN-based methods, Edgent and DINA, which
do not utilize batching. Octopus takes advantage of both batching and multi-exit
inference to improve the overall throughput of the edge cluster while significantly
reducing resource occupancy.

SLO Violation Rate. We also analyzed the SLO violation rate of Octopus
at a request rate of 30rps. As shown in Fig. 4(b), Octopus exhibits the lowest
SLO violation rate, below 5%, thanks to its SLO-aware latency predictor. The
admission control module in DeepRT aims to reduce the SLO violation rate by
analyzing the schedulability of inference requests, but it ignores the temporal
relationship between inference requests, resulting in a higher SLO violation rate
than Octopus. Edgent and DINA do not focus on SLO awareness for inference
requests, and thus have significantly higher SLO violation rates.

B DeepRT mEdgent ODINA 0OOctopus B DeepRT mEdgent ODINA 0OOctopus

;\; 0,
& 200 = 20%
o 2
= 150 O 15%
a S
< 100 = 10%
> ©
= []
£ S ﬂj ']]
= ‘:D 9
YOLOv4-Tiny  EfficientViT-B1 BERT-Base YOLOv4-Tiny  EfficientViT-B1 BERT-Base
(a) Overall throughput (b) SLO violation rate

Fig. 4. The end-to-end performance of Octopus.
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6.3 Visualization of Scheduler in Three-Dimensional Search Space

As shown in Fig.5(a), within the complex three-dimensional search space, the
scheduler chooses the Jetson Nano with the lowest computility, a moderate batch
size, and a moderate exit point for YOLOv4-Tiny, which has the lowest comput-
ing density. For EfficientViT-B1 in Fig.5(b), which has the highest computing
density, the optimal configuration, is a larger batch size, the Xavier NX with the
highest computility, and a later exit point. For BERT-Base, which has a com-
puting density between that of YOLOv4-Tiny and EfficientViT-B1, as shown in
Fig.5(c), the scheduler chooses the Jetson TX2 with moderate computility, a
larger batch size and a later exit point. Overall, Octopus can seamlessly adapt
to heterogeneous edge nodes and different multi-exit DNN models for various
inference requests, choosing the optimal batch size and exit point to maximize
throughput while satisfying SLO budget and accuracy requirement.
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Fig. 5. The learning process of sheduler. x represents the optimal joint configuration.

6.4 Impact of Latency Predictor

To evaluate the effect of proposed SLO-aware latency predictor, we collected
end-to-end latency and SLO for a total of 500 inference requests. We randomly
selected 400 information of requests as training data and 100 data for validation.
Figure 6(a) presents the training loss curve over 120 epochs. The results demon-
strate that Octopus enables more accurate SLO-awareness based on contextual
historical requests compared to the widely adopted linear regression-based pre-
dictive model used in prior work [1]. Furthermore, benefit from the combination
of lightweight LSTM and attention, Octopus significantly reduces training loss
and achieves similar convergence to linear regression. We also report the SLO vio-
lation rate in Fig. 6(b), which shows that the attention-based LSTM reduces the
average SLO violation rate from 7.9% to 3.5%, compared with linear regression.
It reveals that linear regression is inefficient for accurately predicting the SLO of
unknown inference requests. In contrast, the attention-based LSTM focuses on
the temporal relationship between inference requests, which utilizes neural net-
works to model the nonlinear relationship between inference latency and complex
influencing factors, thereby effectively avoiding SLO violations.
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6.5 Impact of Network Bandwidth

In this section, we evaluate the impact of dynamic network conditions on the
optimal configuration chosen by the scheduler in Octopus. The trend in Fig. 7(a)
indicates that the batch size increases as network bandwidth improves, allowing
more requests to be processed and resulting in higher throughput. Figure 7(b)
shows that the scheduler chooses the earliest exit point for all requests when
the available bandwidth is only 2Mbps. Similarly, as the network bandwidth
improves, the position of exit point is gradually moved back to improve accuracy
while satisfying SLO. The results in Fig. 7(c) demonstrate that Octopus tends
to schedule requests to edge nodes with high computility, such as Xavier NX,
under poor network bandwidth conditions. In contrast, when bandwidth is not
the bottleneck, Octopus schedules requests to edge nodes with low computility,
such as Jetson Nano or TX2, to achieve load balancing of edge cluster.
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Fig. 6. The performance of the proposed latency predictor.
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Fig. 7. The impact of dynamic network on the optimal configuration.

6.6 Evaluation of Scalability

Different Request Rates. Since the performance of scheduler, especially the
position of the exit point, is affected by the request rate, we evaluate inference
accuracy by gradually increasing the request rate. Note that DeepRT, which
does not employ multi-exit DNNs, exhibits the highest accuracy. Figure 8 shows
that Octopus outperforms Edgent and DINA in terms of accuracy, with the
performance improvement increases as the request rate increases. For instance,
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at 50rps request rate, the average accuracy improvement of Octopus is up to
10.6% and 7.6% compared to Edgent and DINA, respectively. Additionally, the
accuracy loss of Octopus remains within 5%. The results indicate that the SLO-
aware latency predictor and learning-based scheduler enable Octopus to handle
high request rates while maintaining high accuracy.

Number of Edge Nodes. We evaluate the scalability of Octopus by scaling
the number of edge nodes. As shown in Fig. 9(a), the average overall throughput
improvement of Octopus with eight nodes is 3.1x, 2.1x and 1.2x that of two,
four and six nodes, respectively. This indicates that the number of edge nodes
is highly linear with the overall throughput of edge cluster. We also report the
effect of the number of edge nodes on SLO violation rate and inference accuracy
in Fig.9(b). Intuitively, inference accuracy gradually improves as the number
of edge nodes increases. For instance, the average accuracy of Octopus with
eight nodes is 2.6%, 1.8% and 1% higher than that of two, four and six nodes,
respectively. Additionally, the SLO violation rate at the default request rate
(30rps) remains within 5%, demonstrating the flexible scalability of Octopus.
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Fig. 8. The impact of different request rates on inference accuracy.
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7 Conclusion

In this paper, we propose Octopus, a multi-exit DNN-based progressive infer-
ence serving system for heterogeneous edge clusters. The learning-based sched-
uler in Octopus aims to maximize the overall throughput of edge clusters by
automatically co-optimizing the joint configuration of batch size, exit point, and
node dispatching for each inference request. Additionally, Octopus leverages an
attention-based LSTM as a latency predictor to achieve SLO-aware. Our proto-
type implementation illustrates that Octopus has flexible scalability, and it can
improve the overall inference serving throughput by up to 3.3x compared to the
state-of-the-art schemes, while satisfying SLO and maintaining high inference
accuracy. We emphasize that Octopus is primarily targets edge clusters, but is
also applicable to individual edge devices. For the future work, Octopus can be
combined with various inference optimization technologies (such as cloud-edge
collaborative inference, compilation optimization, model compression, etc.) to
further improve inference performance.
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