Check for
Updates

POS: An Operator Scheduling Framework for Multi-model
Inference on Edge Intelligent Computing

Ziyang Zhang
Harbin Institute of Technology,
Harbin
Harbin, Heilongjiang, China
zhangzy@stu.hit.edu.cn

Changyao Lin
Harbin Institute of Technology,
Harbin
Harbin, Heilongjiang, China
lincy@stu.hit.edu.cn

ABSTRACT

Edge intelligent applications, such as autonomous driving usually
deploy multiple inference models on resource-constrained edge
devices to execute a diverse range of concurrent tasks, given large
amounts of input data. One challenge is that these tasks need to
produce reliable inference results simultaneously with millisecond-
level latency to achieve real-time performance and high quality of
service (QoS). However, most of the existing deep learning frame-
works only focus on optimizing a single inference model on an
edge device. To accelerate multi-model inference on a resource-
constrained edge device, in this paper we propose POS, a novel
operator-level scheduling framework that combines four operator
scheduling strategies. The key to POS is a maximum entropy re-
inforcement learning-based operator scheduling algorithm MEOS,
which generates an optimal schedule automatically. Extensive ex-
periments show that POS outperforms five state-of-the-art infer-
ence frameworks: TensorFlow, PyTorch, TensorRT, TVM, and IOS,
by up to 1.2X~3.9% inference speedup consistently, with 40% im-
provement on GPU utilization. Meanwhile, MEOS reduces the
scheduling overhead by 37% on average, compared to five baseline
methods including sequential execution, dynamic programming,
greedy scheduling, actor-critic, and coordinate descent search algo-
rithms.

CCS CONCEPTS

+ Human-centered computing — Ubiquitous and mobile comput-
ing; » Computing methodologies — Planning and scheduling.
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1 INTRODUCTION

As we all know, Al accelerators and lightweight deep neural net-
work (DNN) have boosted rapid expansion of edge intelligence
applications [1, 10], from intelligent inspection in drones [14] to
crop growth monitoring in smart agriculture [39], from voice as-
sistants [36] and recommendation systems [4] in smartphones to
visual detection in autonomous driving [8]. Recent research on edge
intelligent systems focuses on efficient multi-task DNN inference,
i.e., how to deploy multiple DNN models on a single edge device
with better resource utilization and lower cost [34]. For instance, for
a scene perception system in autonomous driving, multiple DNN
models are deployed on a single edge device to take full advan-
tage of the compute capability of accelerators to perform real-time
inference tasks, such as vehicle detection [24], traffic light recog-
nition [17] and lane tracking [16], etc. Such multi-model inference
requires not only high accuracy, but also millisecond-level latency.
However, current accelerators with GPUs struggle to achieve high
throughput and low latency at the same time for multi-model in-
ference [2, 3].

One of the most important factors affecting the performance is
operator scheduling, i.e., deciding the order to perform operators in
the computation graph abstracted from the DNN model. The opera-
tors here represent computation units such as matrix multiplication,
e.g., convolution operations [7, 22]. We briefly describe how deep
learning models execute on GPUs in a fine-grained manner. Existing
deep learning frameworks (e.g., TensorFlow, PyTorch, etc.) first ab-
stract DNN models into a computation graph, i.e., a directed acyclic
graph (DAG) constructed from operators and their dependencies.
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To carry out model inference, the scheduler of deep learning frame-
work must go through the following process: @ choose an operator
from the ready queue that is waiting to be dispatched, and send it
to an appropriate worker thread [18]; @ check the type and shape
of input tensors, and compute these parameters of output tensors;
® allocate free GPU kernels to operators with different tensors
types and shapes, and allocate GPU memory for these tensors at
the same time; @ prepare to submit function parameters related
to GPU kernel to accelerator, and dispatch operator one by one
according to the topological order.

To achieve high inference performance with low overhead, re-
cent works have leveraged various operator scheduling strategies
to accelerate inference. For accelerating single-model inference,
Ding et al. [7] developed an operator-level scheduler, namely IOS,
that considers two operator scheduling strategies, i.e., operator
fusion [23] and inter-operator parallelism [22]. IOS chooses the
optimal approach at different stages of inference based on dynamic
programming scheduling algorithm. However, IOS is only suitable
for accelerating a single inference model.

Compared with single-model inference, multi-model inference
involves resource competition between models and complex sched-
ule [37, 38], and thus is more challenging to achieve low latency
and high throughput. To illustrate the challenge, we show the multi-
model scheduling problem of current deep learning frameworks,
e.g., TensorFlow and PyTorch, running on GPUs in Fig. 1. We utilize
a series of single models (i.e., ResNet18/34/50 [12], Inception-v1 [31],
and MobileNet-v1 [13]) to assemble homogeneous (R18+R34+R50)
and heterogeneous (R18+Iv1+Mv1) multi-model. We leverage the
concurrent execution strategy(i.e., CUDA streams) from native GPU
multi-stream support to evaluate the inference performance of dif-
ferent multi-model combinations on a single edge device. It is clearly
seen from Fig. 1 that the current deep learning frameworks provided
by vendors have not enough support for multi-model inference yet.
To be more specific, the average GPU utilization of Tensorflow for
homogeneous and heterogeneous multi-model inference is only
34% and 43%, respectively. The result under PyTorch is even lower.
Moreover, the overall inference latency of multi-model under Ten-
sorFlow/PyTorch unable to satisfy the real-time demands of edge
intelligence applications. The reason for the low utilization and
high latency is that the schedule in deep learning framework are
either sequential or limited execution in parallel for computation
graphs, which leads to the interference mainly caused by the po-
tential GPU kernel queuing delay and resource contention when
inferring multi-model on a single GPU. Therefore, such inefficient
schedule would cause huge GPU idle in multi-model inference.

In order to utilize the resource of accelerator efficiently to speed
up multi-model inference concurrently, Yu et al. [37] first abstracted
multi-tenant inference scheduling into fine-grained concurrency
control, and then proposed the scheduling algorithm based on
machine learning to automatically find the optimal amount of par-
allelism for each stage in computation graph composed of multi-
model. However, it only considers inter-operator parallelism and
has not considered other scheduling strategies yet, e.g., intra-operator
parallelism, operator fusion, subgraph reuse, etc. Accordingly, a
framework based on that still would not utilize the full compute
capability and parallel advantage of edge accelerators.
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Figure 1: The overall inference latency and average
GPU utilization from different multi-model combina-
tions: ResNet18+ResNet34+ResNet50 (homogeneous [12]),
ResNet18+Inception-vl+MobileNet-v1 (heterogeneous [13,
31]), running on NVIDIA Xavier NX GPU with 8 GB memory.

In this paper, we propose a novel operator-level scheduling
framework, namely POS, to provide efficient multi-model inference
service. The key to POS is a novel operator-level scheduling algo-
rithm, maximum entropy reinforcement learning-based operator
scheduling, namely MEOS. MEOS first searches for optimal sched-
ule in the training stage offline, and then deploys the generated
optimal schedule to edge devices for online inference in real-time.
POS targets to efficiently utilize the resources of edge accelerators
through fine-grained scheduling at the operator level, accordingly
reducing the overall inference latency of multi-model. The pro-
posed MEOS algorithm can schedule multi-model intelligently with
four operator scheduling strategies: operator fusion [23], subgraph
reuse [7], inter-operator and intra-operator parallelism [22]. Specif-
ically, operator fusion and subgraph reuse can significantly reduce
memory access and kernel scheduling overhead. Inter-operator and
intra-operator parallelism can improve the parallelism of model in-
ference in coarse-grained and fine-grained modes, respectively. The
efficacy of four operator scheduling strategies mentioned above has
been demonstrated for a single model [7, 22], in which one or two
operator scheduling strategies are used in inference acceleration.

Different from the previous single-model acceleration work based
on operator scheduling, we utilize multiple operator scheduling
strategies to accelerate multi-model inference concurrently. To the
best of our knowledge, we are the first to combines four operator
scheduling strategies to accelerate multi-model inference. To sum-
marize, we design a novel operator scheduling framework, namely
POS, to support efficient multi-model inference and have the fol-
lowing three major contributions:

e We abstract the multi-model inference into a computation
graph-based unified intermediate representation (IR), thus
transforming the overall latency problem of minimizing
multi-model inference into a fine-grained operator schedul-
ing problem.

e Based on four operator scheduling strategies, we propose a
novel learning-based operator scheduling algorithm, namely
MEOS, to find optimal scheduling strategies for operators in
computation graph automatically.
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e We conduct extensive experiments in diverse multi-models.
The results show that POS can consistently achieve 1.2X~3.9x
speedup compared to state-of-the-art deep learning infer-
ence frameworks, with 40% improvement on GPU utilization.
Meanwhile, MEOS reduces the average scheduling overhead
by 37%.

2 MOTIVATION

In this section, we explain the motivation of this work, and the
reason why this work outperforms current sequential and parallel
scheduling algorithms in multi-model inference. As shown in Fig. 2,
for sequential scheduling, since a single operator takes over the
entire computing resources, the sequential execution for a single
operator significantly increases kernel dispatch overhead and mem-
ory access, resulting in low resource utilization and high inference
latency. For scheduling in parallel, the scheduler abstracts each
model into computation graph-based unified intermediate repre-
sentation (IR). In particular, the nodes and edges in the computation
graph represent operators and the dependencies between operators,
respectively. The computation graph is divided into multiple stages,
and the operators in the same stage can be executed in parallel,
while the operators in different stages are executed sequentially.
Although this approach improves resource utilization, the perfor-
mance improvement is limited, because there is no more effective
parallel schedule to reduce kernel dispatch overhead and memory
access, which inevitably increases inference latency.

Stage 1
model A

Stage 2

Stage 3

model B
Stage 4

Stage 5

model C Stage 6

Parallel Schedule
$
medium-latency(143ms)
medium-utilization(65%)

Sequential Schedule

\ 4
high-latency(218ms)
low-utilization(32%)

Figure 2: The performance of multi-model inference with

different schedules.
The existing scheduling algorithms essentially optimizes the

inference of a single-model. For more challenging multi-model in-
ference, we need more advanced schedule. To this end, we combine
intra-operator parallelism, operator fusion, and subgraph reuse,
in addition to inter-operator parallelism, in order to improve par-
allelism by significantly reducing kernel dispatch overhead and
memory access. Fig. 2 illustrates the inference latency and resource
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utilization of various scheduling algorithms in multi-model infer-
ence. We can clearly see our method outperforms sequential and
scheduling in parallel. We explain the four operator scheduling
strategies mentioned above in more details in Section 4.

Once we define the computation graph-based search space, we
need to answer another question: how to find an optimal schedule
with minimal overhead in large search space composed of multi-
model. Existing work has demonstrated that the number of sched-
ules is exponential in the number of operators [7]. Our work is
inspired by recent advantages of deep reinforcement learning in
dealing with complex policy decision, so that we investigate how
to apply it to our computation graphs-based operator scheduling
problem. As described in Section 4.2, we reformulate our schedul-
ing problem, and propose an deep reinforcement learning-based
operator scheduling framework POS. POS targets to find optimal
schedule automatically for operators in different stages in order to
significantly reduce inference latency.

3 PROBLEM FORMULATION

We first abstract multi-model into a directed acyclic graph (DAG)-
based unified intermediate representation (IR) [37]. The computa-
tion graph can be expressed as G = (V, E). Where V is the set of op-
erators, a vertex represents an operator. E is the set of edges with de-
pendencies between operators. Afterward, we split the computation
graph into multiple stages, denoted as G = {stagey, stagey, ..., stagen }.
The stages are executed sequentially according to First-In-First-
Out (FIFO), and operators in the same stage can be executed in
parallel with different scheduling strategies. In addition, we de-
fine different pieces in the same stage as a group, denoted as
stage = {91, g2, --» gm }- The operators in the same group are exe-
cuted sequentially, while operators in different groups in the same
stage can be executed in parallel.

According to the computation graph obtained by the abstraction,
we can transform a minimization problem of the overall latency
of multi-model inference into a fine-grained operator scheduling
problem.

The schedule of a computation graph G, i.e., a policy ®, which
can be formulated as:

® = {si(Pi, L)} (1)
where s; is the ith stage, L; is the running latency for the ith stage,
and P; is the corresponding operator scheduling strategy for the
ith stage.

We utilize the cost model in [2] to measure the inference la-
tency of the overall computation graph in order to find the optimal
schedule. Our objective function is:

®* = argming f (G, ®), for ® € Rg 2)
where f is the cost model that is used to directly measure the
running latency of the computation graph G generated by using
the schedule ® on device. Ry is all potential search spaces. We
use deep reinforcement learning to generate the optimal schedule
(Section 4).

The definitions and descriptions of the major symbols used in
the rest of this paper are listed in Table 1.
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Table 1: Symbol Table and Description.

Notation ‘ Description

G A computation graph

Vv The set of operators

E The edge set of dependencies between operators
(i) Operator scheduling policy

Si The ith stage

gi The ith group

L; The running latency of the ith stage

P; Operator scheduling strategy for the ith stage

f Cost model

Rp Search space

St The state of agent at timestep ¢
ar The action of agent at timestep ¢
re The reward of agent at timestep ¢
cu CPU utilization

Ju GPU utilization
my Memory utilization

ey Power consumption

14 Temperature parameter

H Entropy

4 SYSTEM DESIGN

Based on the problem formulated above, we design a novel operator
scheduling framework, namely POS, to choose the optimal sched-
uling strategies for operators so that it can provide efficient multi-
model inference services. We further propose a novel entropy-based
deep reinforcement learning algorithm namely MEOS to efficiently
dispatch operators, so that the scheduling overhead is dramatically
reduced in huge spaces that is composed of computation graphs.
The overview framework of POS is shown in Fig. 3, and we will
describe four scheduling strategies in more details next.

system status

N

Edge Device
—0nline —

I Offline

Figure 3: Overview of our proposed operator-level scheduling
framework POS.

4.1 Operator scheduling strategy

The scheduler is the core of POS. We take use of the following
four different operator scheduling strategies to take full advan-
tage of the parallel advantages of GPU: operator fusion, subgraph
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reuse, inter-operator parallelism, and intra-operator parallelism.
To be more specific, operator fusion refers to merge multiple op-
erators of the same or different types into a large operator [23].
Subgraph reuse multiplexes subgraphs with the same input and
output shape in computation graph [7]. Instead of using sequential
orders, inter-operator parallelism changes the topology of opera-
tors in computation graph from sequential to parallel [22]. Finally,
intra-operator parallelism means performing arithmetic operations
in parallel within a single operator [22]. We next describe these
scheduling strategies in detail.

fusion @

(a) Operator Fusion

l 3x3 conv

T TR Wk pool

B 3x3conv

3%3 conv

[l max pool

Time Time

cru CDEDEDEDEDED cru EDEDEDEDEDED
Stream Multiprocessor
(c) Inter-Operator Parallelism

Thread

220008
Kernel !

(d) Intra-Operator Parallelism

Figure 4: Illustration of four operator scheduling strategies.

4.1.1 Operator Fusion. Operator fusion mainly merges producer-
consumer operators with the data-dependent on the computation
graph. This approach reduces additional memory accesses by ex-
ecuting multiple computations at once, rather than writing data
to global memory due to repeated reads. For instance, in Fig. 4(a),
after we merge convolution (conv), bias and rectified linear unit
(relu) operators, we only need to leverage one CBR (conv+bias+relu)
block to replace the original three operator calculations, accord-
ingly reducing two memory access operations. Note that only child
nodes with the same parent node can be merged.

4.1.2  Subgraph Reuse. Similar to the purpose of operator fusion,
subgraph reuse also accelerates inference by reducing memory
access and kernel dispatch overhead. As shown in Fig. 4(b), since
there are many redundant subgraphs in the computation graph
composed of multi-model, we can reuse these subgraphs to reduce
the dispatch frequency of GPU kernel. Due to the limitation of
tensor types and shapes for operators in computation graph, we
only perform subgraph reuse at the beginning of the computation
graph. This is motivated by the fact that the first few layers of the
network structure for multi-model are highly redundant. Another
benefit of using subgraph reuse is that it can also shrink the search
space of the schedule.

4.1.3 Inter-Operator parallelism. In spite of current deep learn-
ing frameworks utilize intra-operator parallelism, the benefit of
inter-operator parallelism has not been explored to make GPU re-
source utilization more efficient. Considering that inter-operator
and intra-operator parallelism are orthogonal, we introduce the
inter-operator parallelism into the scheduling of the operator in
computation graph. As shown in Fig. 4(c), on the left in Fig. 4(c)
illustrates the operator scheduling mechanism of the popular deep
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learning framework. Model inference is accomplished by sequen-
tially scheduling an operator one by one on multiple stream mul-
tiprocessor. On the right in Fig. 4(c) explains the inter-operator
parallelism. We divide the computation graph into multiple stages,
and operators in the same stage can be executed in parallel to
improve resource utilization and reducing latency.

4.1.4 Intra-Operator parallelism. As shown in Fig. 4(d), after the
scheduler in the deep learning framework dispatches operators to
accelerator one by one, the scheduler in accelerator will enable
multi-threading to divide a single operator into finer-grained sched-
uling units, and map them to multi-threading to take full advantage
of the parallelism of accelerator. Here we apply TVM-cuDNN [2] to
achieve intra-operator parallelism. TVM-cuDNN compiles convo-
lutional neural networks in TVM using the cuDNN library, which
would use the convolution kernel provided by cuDNN to efficiently
execute convolutions.

4.2 Operator Scheduling Problem

For single-model operator scheduling, IOS [7] utilizes dynamic
programming to generate optimal schedule for a single model. Al-
though this optimization method can be applied to schedule, the
complexity suffers from the curse of dimensionality as the size of
the problem increases, especially for multi-model operator schedul-
ing. In comparison, deep reinforcement learning (DRL) combines
the advantages of efficient decision of reinforcement learning and
the powerful representation of deep learning, and has proved to
Go [25] and protein prediction [15], et al. Since the computation
graph we abstract from multi-model is extremely complex and has
high-dimensional information. We can naturally treat the operator
scheduling problem as a sequence decision problem, and utilize
DRL to search for the optimal schedule automatically. Therefore,
we convert the function in Eq.(2) into a reward in DRL and model
it as a markov decision process (MDP) that can be described by a
four-tuple: (S, A, x, r). Each parameter is specifically defined as
follows:

4.2.1 State. S is the state space. At each scheduling timeslot ¢, the
agent in DRL constructs a state s; = {G, U}, (s; € S) that consists of
two parts: (I) the computation graph-based search space G = (V, E).
(IT) the system information periodically collected on edge devices,
which include currently available CPU/GPU/memory utilization
and power consumption, denoted as ¢y, gy, my, and ey, respectively.

4.2.2  Action. A is the action space that is used to find the optimal
schedule for the operators in each stage in the computation graph.
Therefore, the schedule at timeslot ¢ can be expressed as a; =
st(P,Ll). Where s is the ith stage in timeslot ¢ for the computation
graph, and Pf and Lf are the operator scheduling strategy selected
by the agent and the corresponding execution latency, respectively.

4.2.3 Reward. r; is the immediate reward obtained by the agent
when the agent executes the action at timeslot ¢. To be more specific,
in this paper r; refers to the execution latency obtained by the
agent after choosing an appropriate operator scheduling strategy
for each stage at each scheduling timeslot t. The agent targets to
maximize the accumulated expected reward E [ZLO v r;], while
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our objective is to minimize the overall inference latency of multi-
model. Therefore, the reward in DRL is:

re=—=f(G,®). ®)

4.2.4  Policy. The policy 7 (a;|s;) refers to the function related to
agent, which is used to decide the next action a;(a; € A) accord-
ing to the state of the environment s; at timeslot . We treat the
scheduling policy @ of operator as the policy function of agent in
DRL. The optimal policy 7* can be defined as follows:

T
Q" = " = argmax,, ZE(Sbat)an [ytr (st at)] (4)
t=0

where y € [0, 1] is a discount factor and p is the trajectory distri-
bution produced by policy 7.

4.3 Maximum Entropy DRL-based Operator
Scheduling Algorithm

4.3.1 Methodology Overview. In general, the conventional DRL-
based approaches have the following weaknesses when applied
to complex real-world tasks: (1) Inefficient sampling: with re-
gard to on-policy approaches such as PPO [27], TRPO [26], etc,
each round of updates needs to resample sufficient samples and
discard the previously samples completely. Therefore, diversity of
numerous samples are required to ensure the algorithm converges.
(2) Extremely sensitive to hyperparameters: with regard to the
off-policy approaches such as DDPG [21], although replay buffer
is used to relieve sampling inefficiency, these approaches are ex-
tremely coupled with Q-value (used for policy evaluation) that may
lead to system instability and affected by hyperparameters readily.
In this work, we introduce entropy into DRL [9] to maximize the
reward while maximizing the entropy of the visited states. As we all
know, the entropy is a measure that describes the indeterminacy for
random variables. Apparently, the higher the uncertainty of random
events, the larger the entropy. The entropy can be formulated as:

H(X)=— D P(x)logP (xi). (5)

x;€X
Introducing entropy in DRL has the following benefits:

o Accelerate convergence. The entropy enables the policy
learned by the agent to be used as initialization for more
complex tasks. The reason is the entropy allows the policy
to learn not only one approach to solve the task, but all of
them, so that the agent is able to learn more near-optimal
actions to accelerate the learning process.

o Encourage exploration. Apparently, the entropy will make
the distribution of actions more uniform, and find a better
schedule faster to avoid falling into a local optimum.

e Robustness improvement. Since the agent can potentially
explore the possibility of diverse optimal solutions with dif-
ferent schedules, therefore the agent is better to make ad-
justments when encountering disturbances.

Because the action in DRL is discrete, we propose a maximum en-
tropy reinforcement learning-based operator scheduling algorithm
namely MEOS. We introduce entropy into reward [9] in MEOS, and



IPSN ’23, May 09-12, 2023, San Antonio, TX, USA
Eq.(4) is converted into the following form:

T
®* = 7* = argmax,, ZE(st,at%pn [ytr (sg, ar)
= (©)
+aH (- | st))]

where « is the temperature parameter used to balance reward and
entropy. H (7 (- | s¢)) = —log z (- | s¢) is the entropy of policy 7 in
state s;. We next describe the proposed MEOS algorithm in detail.

4.3.2  Details of Algorithm. Our proposed MEOS algorithm is sum-
marized in Algorithm 1. MEOS is based on the discrete Soft Actor-
Critic (SAC) [9][5] framework. A dictionary is constructed to record
the execution latency for each stage according to operator schedul-
ing strategy selected by the agent. The dictionary is initialize as @.
Afterward, we initialize all networks and corresponding parame-
ters in MEOS. We use two Q networks and take the one with the
smallest Q-value as the target Q-value to avoid the overestimation
of the Q-value and achieve stable training. In particular, there are
five networks in MEOS, including one policy network as actor and
four Q networks (two Q networks and two target Q networks) as
critics. We finally initialize an empty replay buffer to store historical
experience.

For each episode with the state s; of current timestep t, the agent
chooses an optimal scheduling strategy for each stage according
to the policy in MEOS and evaluate the corresponding latency
simultaneously. We put the result of each scheduling strategy into
the dictionary 7 and returns the operator scheduling strategy with
the lowest latency for each stage. Simultaneously, the agent receives
immediate reward and update the state according to Eq.(3), and put
the current information into the replay buffer as historical data for
next learning step. We utilize soft policy iteration [9] with policy
evaluation and policy improvement to maximize the accumulated
expected reward. The following are the steps in detail:

We first compute the soft state value of policy  in policy evalu-
ation at each gradient step:

V (st) = (s0)" [Q (s¢) — atlog ( (s1))] - ™

We then utilize the modified bellman backup operator to calcu-
late the soft Q-function y;:

Yr =r(se,at) + YEs, ~p(spar) [V (s+1)] 8)
We next update the parameters for all networks.

o Update soft Q-function (Critic network). We train soft
Q-function by minimizing the soft bellman residual, the loss
function of the critic network is:

Jo(0) = E(s,a)-nl5 Qo)

_(r(sts at) + YES,+1~p(s[,a,) [Vé(st+1)]))2]

©

where Vj(s¢+1) is obtained by sampling from the replay
buffer using monte carlo estimation in target network.

e Update policy (Actor network). We update the policy net-
work to maximize reward in policy improvement, the loss
function of the actor network is:

Je(@) = Eqop | (o) [alog (4 (s0)) Qo (s0)] | (10)
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where D represents Kullback-Leibler (KL) divergence, and «
is a temperature parameter [9].

o Update temperature parameters. We utilize the approach
proposed by Haarnoja et al. [9] to update the temperature
parameter « automatically (see [9] for details), which can be
defined as follows:

J(@) = Eg,nm, [~a (log 7y (ar | s¢) + H)| . (11)

o Update target network. We finally update the target net-
work with the soft update to stabilize the training:

0; « nb; + (1 —1n)0;, fori € {1,2}. (12)

Algorithm 1: MEOS operator-level scheduling algorithm

Input :a computation graph G = (V, E) of M models, the
number of stages s; in each model, and current
system status u; = {c¢, gr, my, er }

Output:an optimal schedule ®*

1 Initialization a dictionary 7{s;(P;,L;)} = @ to record the
latency of each stage L; according to the scheduling
strategy selected by agent P;;

2 Randomly initialize network parameters 01, 62, ¢, a;

3 Initialization the weights of actor network 7 (s|¢) with ¢
and critic network Q(s,a | 01),Q(s,a | 62) with 0; and 65,
respectively;

4 Initialization the weights of target network
Q" : 01 — 01,0, — 0

5 Initialize an empty replay buffer D « @;

¢ for episodee < 1to E do

7 for environment stept < 1to T do
8 for the ith stagei < 1to N do
9 Choose action a; based on policy ¢ (a; | s¢);
10 T si(Pi,Li);
11 end
12 return Pti with the lowest latency Li;
13 Obtain instant reward r; (a; | s;) using Eq.(3);
14 st+1 ~ p(see1 | st,ar);
15 D  (st,az,r(st,at), St+1);
16 end
17 for each gradient step g < 1 to G do
18 Calculate V (s;) for policy 7 using Eq.(6);
19 Obtain the soft Q-function y; using Eq.(7);
20 Update critic network 6; using Eq.(8);
21 Update actor network ¢ using Eq.(9);
22 Update temperature parameter « using Eq.(10);
23 Update target network 0; using Eq.(11);
24 end
25 end

Case: Fig. 5 illustrates the scheduling process from POS for the
multi-model inference case shown in Fig. 2. The parallel scheduling
in Fig. 2 divides the computation graph composed of multiple mod-
els into seven stages, while POS shortens the number of stages to
three. In addition, the four scheduling strategies used by POS can
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effectively improve resource utilization to increase the concurrency
of multi-model inference. Specifically, the optimal schedule found
by POS reduces latency by 31% and 55% compared to sequential
and concurrent, respectively.

subgraph reuse

operator fusion
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inter-operator concurren

VAVAV S
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¥

low-latency(98ms)
high-utilization(91%)

Figure 5: The optimal schedule from POS for the multi-model
inference case illustrated in Fig. 2.

5 PERFORMANCE EVALUATION

In this section, we report comprehensive evaluation results to illus-
trate the efficiency of POS with comparison with other state-of-the-
art deep learning frameworks and different scheduling algorithms.

5.1 Experimental Setup

5.1.1  Benchmark Models. We benchmark nine modern CNNs in
our experiment: ResNet-18/34/50 (R18/34/50) [12], Inception-v1/v2/v3
(Iv1/v2/v3) [31] and MobileNet-v1/v2/v3 (Mv1/v2/v3) [13]. Table 2
shows different combinations of nine models with a homogeneous
or heterogeneous manner. Note that these models have different
types and numbers of operators, therefore, these models have dif-
ferent requirements for computing and memory resources.

5.1.2  Baselines. We compare POS with the following five state-of-
the-art deep learning inference frameworks:

o TensorFlow: As a deep learning framework with static graphs,
TensorFlow constructs a tensor-based static computation
graph before execution, and then dispatches operators one
by one sequentially.
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Table 2: Homogeneous/Heterogeneous Combinations of
Multi-model.

Combination Type Multi-model

ResNet-18+ResNet-34+ResNet-50

Homogeneous Inception-v1+Inception-v2+Inception-v3
MobileNet-v1+ MobileNet-v2+ MobileNet-v3

ResNet-18+ Inception-v1+ MobileNet-v1

Heterogeneous ResNet-34+ Inception-v2+ MobileNet-v2

ResNet-50+ Inception-v3+ MobileNet-v3

e PyTorch: Unlike TensorFlow, PyTorch is a deep learning
framework with dynamic graph, which means that DNN
models unnecessary generate computation graphs before
compile phase. Similarly, the scheduler in PyTorch also dis-
patches operators sequentially.

o TensorRT: As an popular deep learning inference engine,
TensorRT accelerates inference through a series of light-
weight technologies (e.g., weight pruning, operator fusion,
and precision quantization etc.), which schedules the com-
putation graph after the automatic fine-tuning of the kernel
to the multi-stream in GPUs to execution in parallel.

e TVM: An machine learning compiler framework for infer-
ence optimization. TVM abstracts the DNN model into a
computation graph-based unified intermediate representa-
tion, and utilizes AutoTVM [3] and AutoScheduler [41] to
generate optimal schedule for scheduling primitives [2] (e.g.,
loop transformations, inlining, vectorization, etc.) on GPUs.

e JOS: 10S considers operator fusion and inter-operator paral-
lelism, and utilizes dynamic programming-based scheduler
to accelerate model inference.

Besides, we also compare the proposed MEOS scheduling al-
gorithm with five different scheduling algorithms, i.e., sequential
execution, dynamic programming (DP), greedy scheduling, Actor-
Critic (AC) and coordinate descent search (CDS) in [37] with the
same inference framework. We discuss in more details in Section 5.3.

5.1.3 Implementation. We implement the prototype of POS with a
popular edge device and a camera to evaluate the performance of
multi-model inference. Specifically, we take NVIDIA Xavier NX as
an edge device and deploy it on autonomous vehicle. NVIDIA Xavier
NX is an embedded edge computing platform to provide inference
services, which installed Ubuntu 18.04 with cuDNN 7.6.5 and CUDA
10.2. We use the Intel RealSense D435 to capture the video in real-
time that can generat video frames with 1920x1080 resolution at
30 frames per second (FPS). Note that POS can be suitable for high-
resolution images if the computing power of the edge device is
abundant or there is no strict real-time constraint. Due to limited
computing power of edge devices, we downsample the resolution
of video to 224x224x3, and set the batch size to 1. Furthermore, we
report the average inference latency of 5 experiments.

We use PyTorch to implement our proposed MEOS algorithm in
Algorithm 1. All networks are trained with the Adam optimizer and
leveraged a three-layer relu activation function with 128, 64, and 32
hidden units in each layer. In addition, we fixed the learning rate to
1e~%. The buffer size and batch are set to 1e® and 512, respectively.
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5.2 Comparison of State-of-the-art Deep
Learning Frameworks

We evaluate the inference performance of the proposed POS sched-
uling framework on three homogeneous models. All inference ex-
periments are performed on batch size one unless stated other-
wise. We compare it to five state-of-the-art deep learning frame-
works. The performance is normalized according to the optimal
inference latency to compare the relative speedup. Fig. 6 indicates
that POS consistently outperforms all benchmark frameworks for
three homogeneous multi-models. In particular, POS has a signifi-
cant improvement compared with TensorFlow and PyTorch with
2.6X~3.9% speedup. The reasons are as follows:

On one hand, the built-in scheduler of baseline frameworks
utilize sequential execution, which require frequent dispatch kernel
and access memory. On the other hand, the baseline frameworks
does not consider execution in parallel to fully exploit the potential
of GPUs, which lead to inefficiency.

Furthermore, compared to state-of-the-art libraries like TVM,
TensorRT and IOS, POS can also achieve 1.2xX~1.5X speedup. Al-
though these libraries considered operator parallelism to accelerate
inference, they either only utilize inter-operator parallelism or op-
erator fusion, ignoring the cooperative scheduling of inter-operator
and intra-operator parallelism. Therefore, the degree of operator
parallelism is still limited.
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Figure 6: The inference performance of diverse homogeneous
models on different deep learning frameworks. The through-
put is normalized to the highest one for each model.

In addition to homogeneous multi-model, we also investigate
the inference performance of all framework under heterogeneous
multi-model. As shown in Fig. 7, POS can achieve 1.2X~2.8X rela-
tive speedup. We observe that the outperformance is lower than the
homogeneous model. The reason for this phenomenon is that there
is less similarity between the structures of heterogeneous models
that reduces the redundancy of operators. Since there are fewer op-
portunities to apply operator fusion and subgraph reuse, the kernel
dispatch overhead and frequency of accessing memory is increased.
Moreover, the computation graph abstracted from heterogeneous
multi-model is more complex, this also affects the operator-inter
parallelism to a certain degree.
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Figure 7: The inference performance of diverse heteroge-
neous models on different deep learning frameworks. The
throughput is normalized to the highest one for each model.

5.3 Comparison of Different Scheduling
Algorithms

In this subsection, we report the results of the comparison of var-
ious schedules. The baselines include five scheduling algorithms:
sequential execution, dynamic programming (DP), greedy sched-
uling, Actor-Critic (AC), and coordinate descent search (CDS). We
execute all operator scheduling strategies on IOS’s inference en-
gine [7] for fair comparison. Fig. 8 shows the inference latency of all
homogeneous multi-models, it demonstrates that POS consistently
outperforms all baselines with 1.2x~2.8x relative speedup.
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Figure 8: The inference performance of diverse homogeneous
models on different scheduling algorithms. The throughput
is normalized to the highest one for each model.

We explain the results from the following aspects: (I) The sequen-
tial execution only individually dispatches operators according to
the topology in the computation graph. Because it ignores the ben-
efits of parallelism, the inference performance is inefficient. (II) The
greedy scheduling puts all operators in the same stage, and repeats
this process until all operators have been dispatched. Although the
performance is improved to a certain degree, it will cause excessive
operators in the same stage, which results in resource saturation
or even out of memory that extremely affects the inference perfor-
mance. (II) The dynamic programming in IOS [7] selecting the best
one between operator fusion and operator parallelism in the last
stage for a computation graph. It utilizes two operator scheduling
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strategies and that is why the performance is better than the pre-
vious two approaches. (IV) Coordinate descent search performs a
one-dimensional search along a coordinate direction at the current
point to find a local minimum of a function, which is easy to fall
into a local optimum. (V) Compared with Actor-Critic, MEOS with
entropy can find a better schedule to avoid falling into local opti-
mum. (VI) MEOS considers more operator scheduling strategies:
operator fusion, subgraph reuse, inter-operator and intra-operator
parallelism, which can fully exploit the parallelism of operators
to significantly reduce kernel dispatch overhead and memory ac-
cess. Therefore, the acceleration performance of MEOS is more
significant than all baselines.

Fig. 9 shows the inference performance of various scheduling
algorithms on heterogeneous multi-model. We also have the follow-
ing observations: (I) Similar to the performance of deep learning
frameworks in heterogeneous models, the schedule are also af-
fected by model heterogeneity, which means fewer opportunities
for operator fusion and subgraph reuse. Nonetheless, POS still has
1.2X~2.9% speedup even compared with the baselines. The reason
is that POS can consider more operator scheduling strategies and
maximize operator parallelism to match the computing advantages
for GPU. (I) Since MEOS is more suitable for efficiently dealing
with complex computation graphs, the advantages of POS are grad-
ually increasing when heterogeneous multi-model changes from
simple to complex, such as from R18+Iv1+Mv1 to R50+Iv3+Mv3. In
addition, MEOS can enable the agent to obtain stronger exploration
to find a better schedule by introducing entropy.
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Figure 9: The inference performance of diverse hetero-
geneous models on different scheduling algorithms. The
throughput is normalized to the highest one for each model.

5.4 Real-World Performance Evaluation

In Fig. 10, we use YOLOP [35] to evaluate the performance of in
real-world low-speed automated driving (LSAD). LSAD is an au-
tonomous driving system with a maximum speed of 8.89 m/s (32
km/h). It is used for last-mile transportation, such as unmanned
warehouses, unmanned docks, university campuses, and other ap-
plications in low-speed environments. As a composite model of
full-scene perception for automatic driving, YOLOP consists of three
submodels: vehicle detection, lane line segmentation, and drivable
area segmentation. Therefore, YOLOP is a heterogeneous multi-
model. Likewise, POS and the baseline deep learning frameworks
execute on the inference engine of 10S.
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Intel RealSense D435

Figure 10: The implementation of POS for multi-model in-
ference in autonomous driving. We use YOLOP [35] as the
workload, which consists of three submodels: vehicle detec-
tion, lane line segmentation, and drivable area segmentation.

Table 3: The inference latency of different frameworks and
scheduling algorithms for YOLOP on NVIDIA Xavier NX.
FPS (images/s)

Framework & Algorithms

TensorFlow 11.2 (3.16X T)
PyTorch 10.6 (3.34%x T)
TensorRT 28.5(1.24% T)
TVM 25.6 (1.38x 1)
10S 28.1 (1.26x T)
POS 354
Sequential 14.9 (2.13%x 1)
Greedy 23.7 (1.34% T)
DP 25.0 (1.27% 1)
CDS 26.9 (1.18x T)
AC 21.8 (1.46x T)
MEOS 31.8

Table 3 shows the inference latency of different deep learning
frameworks and scheduling algorithms for YOLOP. The inference
performance of POS is 3.16x and 3.34X compared with TensorFlow
and PyTorch, respectively. Obviously, POS considers four operator
scheduling strategies that can effectively improve GPU utilization
to significantly reduce inference latency. Besides, compared to the
state-of-the-art deep learning inference frameworks such as Ten-
sorRT, TVM and IOS, POS also has 1.24x~1.38x speedup. More-
over, MEOS has 1.18X~2.13X relative speedup when comparing the
baseline scheduling algorithms. All these results demonstrates the
efficiency of MEOS.

Resource contention. As shown in Fig. 11, we visualize the
memory usage timeline of the scheduling strategy used by POS for
the three subtasks in YOLOP. In order to mitigate the impact of
contention, POS uses more parallel strategies to increase resource
utilization to compensate for its performance loss. The results show
that our method can efficiently find better schedules through a rein-
forcement learning-based automatic search algorithm (i.e., MEOS),
thereby achieving higher speedup in multi-model inference.

5.5 Scheduling Algorithm Comparison and
Overhead Analysis

5.5.1 Scheduling Algorithm Comparison. Fig. 12 presents the per-
formance of all scheduling algorithms when search for optimal
inference latency in the case of R18+R34+R50 and YOLOP. All
methods are evaluated on the inference engine of I0S. The red
line illustrates the native performance of the scheduling algorithms
(sequential) in popular deep learning frameworks. Especially, in
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Figure 11: Resource contention for multi-model. POS could
find a better schedule to avoid both contention and under-
utilization, thus achieving better performance.

complex scenarios like Fig. 12(b), MEOS has faster convergence and
lower latency. It is also attributed to the benefits of entropy that
can accelerate the learning process and improve stability. In con-
trast, MEOS has a slight advantage in homogeneous model. Overall
speaking, the results indicate that MEOS has both better perfor-
mance than baseline algorithms in homogeneous (R18+R34+R50)
and heterogeneous (YOLOP) multi-model.

5.5.2  Scheduling Overhead Analysis. We use a homogeneous and
two heterogeneous multi-models to evaluate the scheduling over-
head of MEOS, greedy scheduling, DP, CDS and AC (sequential
execution has no scheduling overhead), respectively. All scheduling
algorithms are also executed on the inference engine of I0S. As
shown in Fig. 13, POS can generate a near-optimal schedule with
less overhead. To be more specific, the average scheduling overhead
of POS is reduced by 37% compared to the baselines. It is also reveals
that the conventional heuristics-based approaches are inefficient in
processing complex computation graph. Because MEOS introduces
entropy to enable the agent learn more near-optimal actions in
order to accelerates convergence. Note that MEOS is trained offline
and deployed online.

5.6 Micro-benchmark Performance

5.6.1 Different GPU platforms. Fig. 14 shows the performance of
our scheduling framework POS under four heterogeneous GPU
platforms and three model settings. Compared with the baseline
inference frameworks, POS has a significant overall performance
gain (1.35X to 2.84x average speedup) on different GPU platforms.
More importantly, POS also shows a great advantage in real-time
performance, which can inference complex model YOLOP at the
speed of 15.6FPS even on the Jetson Nano that has the most limited
resources. The results demonstrate that POS is able to find better
schedule than the baseline frameworks. Furthermore, it also reveals
the scalability advantage of POS, since it can accelerate the inference
of multi-model simultaneously on GPU platforms with different
architectures. With the learning-based scheduling algorithm MEOS,
POS has the power to find the optimal schedule for different multi-
model combinations and GPU accelerators automatically, which
significantly relieving the manual tuning efforts.
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Figure 12: The Scheduling Algorithm Comparison. This ex-
periment is conducted on NVIDIA RTX 3080 GPU.
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gorithms on NVIDIA RTX 3080 GPU.
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Figure 14: The end-to-end inference performance of POS on

heterogeneous GPU platforms.

5.6.2 Different batch sizes. In reality, we normally increase the
batch size to infer a series of input data concurrently in order to fully
utilize the computing resources of accelerator. However, increasing
batch size will reduce inference latency, which is not available
for real-time inference with resource-constrained edge devices. In
contrast, the larger batch size improves throughput for the device
with abundant computing resource. In practice, the above case is
more prevalent in cloud computing. In addition, multi-model with
different batch sizes requires distinct operator schedules. Here we
use a cloud server with NVIDIA RTX 3080 to evaluate end-to-end
performance comparison of all frameworks for inferring YOLOP
with different batch sizes. We observe that the throughput increases
with the batch size in Fig. 15. Similarly, the throughput of POS
consistently outperforms all baselines in the case of different batch
sizes. The results illustrates that POS can generate optimal schedule
automatically for different batch sizes. Note that the throughput
tends to saturate or even drop slightly when the batch size is larger
than 32. The reason is that the access to shared resources by multi-
model will conflict when the batch size is too large, resulting in
reduced throughput.

500
iy —8— TensorFlow =—#— TensorRT —€— I0S
) —¥— PyTorch —4— TVM —— POS
o 400
()
©
£E300
bt
>
9200
e
)
>
©100
e
|_

01 3 8 16 32 64
Batch Size

Figure 15: The throughput comparison of different deep
learning inference frameworks on batch size 1 to 64 for
YOLOP on NVIDIA RTX 3080 GPU.

5.7 Ablation Study

Fig. 16 compares the inference performance of different operator
scheduling strategies in POS with three multi-model combinations.

50

IPSN °23, May 09-12, 2023, San Antonio, TX, USA

We separately evaluate the impact of four strategies, including
operator fusion (denoted as POS-Op.Fusion), subgraph reuse (de-
noted as POS-Reuse), inter-operator parallelism (denoted as POS-
Inter-Op. .Para) and intra-operator parallelism (denoted as POS-
Intra-Op.Para). Compared with sequential, the results with different
strategies of POS all show significant throughput improvement.
Moreover, the inference performance increases with more strate-
gies added, which validates the effectiveness of different strategies
in POS.
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Figure 16: The normalized inference performance of different
operator scheduling strategies in POS with three multi-model

combinations on NVIDIA Xavier NX GPU.

5.8 GPU Utilization

Warp is the basic execution unit of SM (Streaming Multiprocessor)
in GPU. Although GPU utilization can reflect the inference per-
formance of the model, this high-level utilization metric is rough
and it cannot judge how many SMs are being used. To this end,
we choose achieved occupancy (the ratio of active warps on an
SM to the maximum number of active warps supported by the
SM) to compare fine-grained low-level GPU utilization with differ-
ent scheduling algorithms. Fig. 17 illustrates the GPU utilization
comparison between Sequential, Greedy, DP, CSD, AC and our
scheduling algorithm (MEOS) with different multi-model combi-
nations, sampled using NVIDIA’s nvprof profiling tools every 1ms.
Specifically, MEOS achieves 1.4X more active warps on average
compared to the other scheduling algorithms. The results can also
explain the overall performance improvement of POS.

6 RELATED WORK

Single-model acceleration based on operator scheduling. Al-
though model compression [11] (e.g., precision quantization, weight
pruning, and model distillation, etc.) can significantly accelerate
inference, it brings non-negligible information loss that is unaccept-
able for high-precision scenarios such as autonomous driving. To
address the issue, various operator-level schedulers [2] [3] [41] are
proposed from the perspective of automating compilation to achieve
acceleration without losing accuracy. In addition, the scheduler in
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Figure 17: The GPU utilization of different scheduling algo-
rithms for infer YOLOP on NVIDIA Jetson Xavier NX.

deep learning framework only utilize intra-operator parallelism that
leads to inefficiency. To this end, some works [22] [18] [42] utilize
various operator scheduling strategies to improve deep learning-
based model parallelism. However, the above work are only suitable
to accelerate single-model, and the heuristic-based scheduling al-
gorithms made search inefficient.

Multi-model acceleration based on operator scheduling.
In related work on accelerating multi-model inference, Wang et
al. [34] proposed horizontally fused training array (HFTA). HFTA
horizontally fuses operators in multi-model in shared accelerator to
improve GPU utilization. On the one hand, HFTA is aimed at model
training. On the other hand, it only fuse operators with the same
type. Wang et al. [33] proposed a scheduling framework AsyMo
for on-device inference. AsyMo utilizes an asymmetric-aware task
scheduling mechanism to solve the correct partitioning and fair
scheduling for multi-model. Since AsyMo only targets mobile CPUs,
it’s powerless on edge device with accelerators. Han et al. [10]
designed an edge inference system REEF, and proposed a dynamic
kernel filling-based concurrency mechanism to improve overall
system throughput. However, REEF only considered inter-operator
parallelism, and the parallelism in operators is still limited.

7 DISCUSSION

Integration with existing technology. Here we discuss the com-
bination of existing model acceleration techniques with POS. First,
for a series of model compression paradigms, POS is orthogonal
to these techniques, therefore it is natural to seamlessly combine
compressed models with POS to further reduce end-to-end latency.
Second, POS can also be organically combined with edge comput-
ing [29]. Specifically, we can perform POS to the cloud with abun-
dant computing resources to search for the optimal schedule, and
the generated schedule is deployed online to resource-constrained
edge devices. Moreover, we can offload part of computing tasks
from local device to remote server to achieve cloud-edge collab-
orative inference [19] in order to alleviate the workload on local
devices. Overall speaking, POS demonstrates extensive practicality
and scalability, and we hope that POS will become a general infer-
ence framework for research on efficient intelligence applications.
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Limitations and future work. Although POS can sufficiently
accelerate multi-model inference, our work still has some limi-
tations. The auto-scheduler in POS only support the CNN-based
inference model with static shape, which means that all shapes
must be known at the compile time, since POS needs these infor-
mation to construct the scheduling search space. However, modern
deep neural networks, especially natural language processing, in-
troduce control flow [30], dynamic data structures [20, 32], and
dynamic tensor shapes into the models [6], such as transformer-
based language and vision models. Therefore, optimizing dynamic
neural networks is more challenging than static neural networks,
requiring the operator scheduler to consider all possible tensor
shapes. Although some works have investigated the acceleration of
dynamic models [28, 40], they are only suitable for model training.
With the successful application of dynamic models, in the future,
we plan to develop an efficient inference framework for the deep
learning models with dynamic shapes to fill this gap.

8 CONCLUSION

In this work, we propose POS, a novel operator-level scheduling
framework on GPUs to accelerate multi-model inference concur-
rently. We first transform the problem of minimizing the over-
all inference latency of multi-model into a fine-grained operator
scheduling problem. Based on the scheduling search space of the
computation graph, we develop a novel maximum entropy rein-
forcement learning-based operator scheduling algorithm, namely
MEOS, which leverages four operator scheduling strategies to find
the optimal schedule automatically. We conduct extensive exper-
iments on diverse multi-models. The results illustrate that POS
consistently achieves 1.2X~3.9x inference speedup compared to
five state-of-the-art deep learning inference frameworks, with 40%
improvement on GPU utilization. Meanwhile, the average schedul-
ing overhead of MEOS in POS is reduced by 37% compared with
other baselines.
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