266 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 2, FEBRUARY 2025

TOP: Task-Based Operator Parallelism for
Asynchronous Deep Learning Inference on GPU

Changyao Lin
Ziyang Zhang

Abstract—Current deep learning compilers have made signif-
icant strides in optimizing computation graphs for single- and
multi-model scenarios. However, they lack specific optimizations
for asynchronous multi-task inference systems. In such systems,
tasks arrive dynamically, leading to diverse inference progress
for each model. This renders traditional optimization strategies
based solely on the original computation graph suboptimal or even
invalid. Furthermore, existing operator scheduling methods do
not account for parallel task pipelines involving the same model.
Task pipelines present additional opportunities for optimization.
Therefore, we propose Task-based Operator Parallelism (TOP).
TOP incorporates an understanding of the impact of task arrival
patterns on the inference progress of each model. It leverages
the multi-agent reinforcement learning algorithm MADDPG to
cooperatively optimize the task launcher and model scheduler,
generating an optimal pair of dequeue frequency and computation
graph. The objective of TOP is to enhance resource utilization,
increase throughput, and allocate resources judiciously to prevent
task backlog. To expedite the optimization process in TOP, we
introduce a novel stage partition method using the GNN-based
Policy Gradient (GPG) algorithm. Through extensive experiments
on various devices, we demonstrate the efficacy of TOP. It outper-
forms the state-of-the-art in operator scheduling for both single-
and multi-model task processing scenarios. Benefiting from TOP,
we can significantly enhance the throughput of a single model
by increasing its concurrency or batch size, thereby achieving
self-acceleration.

Index Terms—Multi-task
reinforcement learning.

inference, operator scheduling,

I. INTRODUCTION

N CONTEMPORARY AI systems, the concurrent pro-
cessing of tasks for multiple data sources is a prevalent
and challenging requirement. These applications span a wide

Received 16 April 2024; revised 30 November 2024; accepted 2 Decem-
ber 2024. Date of publication 5 December 2024; date of current version 30
December 2024. This work was supported in part by the National Natural
Science Foundation of China under Grant 62350710797 and in part by the
Science and Technology Plan Project of Shenzhen through Project Number
JSGG20220831110002004. Recommended for acceptance by B. Ucar. (Corre-
sponding author: Jie Liu.)

Changyao Lin and Ziyang Zhang are with the School of Computer Science
and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001,
China (e-mail: lincy @stu.hit.edu.cn; zhangzy @stu.hit.edu.cn).

Zhenming Chen is with the China Construction Steel Structure En-
gineering Corp., LTD, Shenzhen, Guangdong 518118, China (e-mail:
chenzm@cscec.com).

Jie Liu is with the National Key Laboratory of Smart Farm Technologies and
Systems, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
(e-mail: jieliu@hit.edu.cn).

Digital Object Identifier 10.1109/TPDS.2024.3511543

, Graduate Student Member, IEEE, Zhenming Chen,
, Graduate Student Member, IEEE, and Jie Liu

, Fellow, IEEE

spectrum, encompassing edge devices within expansive intelli-
gent manufacturing lines, servers hosting multiple Al services,
and embedded Al systems in autonomous vehicles. In such sce-
nario, a multitude of terminals continually dispatch Al inference
tasks to a central server. These tasks may require different deep
neural networks (DNNs, models) for processing, with different
requirements for resources and real-time performance. How
to optimize from different levels to process the tasks more
efficiently is currently a hot research topic.

The development of software and hardware provides a lot of
support and opportunities for multi-task inference [1], [2], [3],
[4]. The existing efficient deep learning inference frequently
combines the characteristics of hardware and software for col-
laborative optimization [5], and can be categorized into model-
[6], [7], layer- [8], and operator-level [9], [10], [11] scheduling.
Due to the different layers or operators within DNNs, coarse-
grained model-level scheduling cannot fully account for the
fluctuated resource consumption. Scheduling at a finer-grained
layer- or operator-level can address this shortcoming [12]. The
finer the granularity, the more flexible the scheduling, and the
more optimization space is introduced, so the optimization cost
is also higher.

A DNN with many operators can be abstracted as a directed
acyclic graph (DAG), also known as a computation graph, where
nodes represent operators, and edges represent data flows and
dependencies between operators. The DNN compiler can for-
mulate and optimize the execution strategy for operators on the
computation graph. Some work optimizes a single model [10],
[13], [14]. However, there are few branches in a single model,
so the schedulable space and parallelism are limited, and peak
performance cannot be achieved on more and more resource-rich
hardware today. In contrast, multi-task deep learning computing
with multiple parallel DAGs usually has extensive inter-operator
parallelism, which makes the scheduling among models more
flexible. This kind of graph scheduling has certain challenges,
such as the increased complexity in larger number of operators
and scheduling space, and the more complex GPU resource
contention, etc [12].

For the operator scheduling of multi-model, it is more suitable
to combine the computation graphs of all models for optimiza-
tion. This kind of work generally assumes that all models share
the input, then formulates the strategy and configures the com-
putation graph offline to execute multitask inference on the input
at the same time. During online execution, all models need to be
synchronized [11], [15], [16]. However, for multi-task inference

1045-9219 © 2024 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and similar technologies.
Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on March 31,2025 at 02:28:20 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-6805-2649
https://orcid.org/0000-0003-2539-8257
https://orcid.org/0000-0001-6209-6886
mailto:lincy@stu.hit.edu.cn
mailto:zhangzy@stu.hit.edu.cn
mailto:chenzm@cscec.com
mailto:jieliu@hit.edu.cn

LIN et al.: TOP: TASK-BASED OPERATOR PARALLELISM FOR ASYNCHRONOUS DEEP LEARNING INFERENCE ON GPU 267

systems, sometimes the models need to be executed for different
data sources. In this case, each model cannot share the input.
The asynchronization of input data leads to offline optimization
being difficult to adapt to the dynamically arrived tasks, resulting
in invalid scheduling or excessive synchronization overhead.
In addition, the existing single- and multi-model optimization
methods do not consider the situation of parallel task pipeline for
the same model, which will introduce more optimizable space.

Several existing graph- or operator-level scheduling schemes
are compiled offline [10], [11], [15], which divide the sug-
gested concurrent operators into the same stage. The generated
computation graph is no longer modified at runtime, causing
a gap between static compilation and dynamic scenarios in
real-world applications, especially when on-device resources are
dynamically available. For the typical multi-source task-based
inference system, as tasks arrive dynamically, the inference pro-
gresses of task instances for each model are different. Therefore,
the operator parallel strategy cannot be pre-determined only
according to the DAG of each model, which may be suboptimal
or even invalid. To fill this gap, a dynamic compilation method is
urgently needed to ensure that the on-device resources are fully
utilized in an adaptive way at runtime.

One idea is to progressively schedule the current operators
and configure the computation graph during inference, but its
runtime overhead is too large. Therefore, we comprehensively
consider model characteristics, task patterns, and hardware re-
sources to explore how to design parallel strategies that improve
the utilization of hardware, thereby increasing the efficiency
of processing asynchronous tasks. We innovatively utilize the
impact of task pattern on the inference progress of each model,
and designs the operator scheduling strategy that conforms to
the inference progress according to the task pattern. Compared
with existing work, we can schedule more effectively and reduce
synchronization overhead.

Specifically, based on multi-agent reinforcement learning al-
gorithm MADDPG [17], this paper proposes Task-based Op-
erator Parallelism (TOP). The TOP framework cooperatively
optimizes the task launcher and model scheduler to generate
an optimal pair of dequeue frequency and computation graph
under the current state. The optimization objective is to enhance
resource utilization, increase throughput, and reasonably allo-
cate resources to avoid task backlog. The main contributions of
this paper are summarized as follows:

e We are the first to schedule operators according to task
pattern, and consider the task pipeline. We achieve effi-
cient collaborative optimization among model-, layer-, and
operator-level.

® We propose a task-based operator parallelism framework
TOP to effectively schedule operators for asynchronous
tasks in inference systems. TOP is applicable to single- and
multi-model optimization, and can also handle the case of
synchronous multitask.

e In order to reduce the overall optimization time of TOP,
we utilize GNN-based Policy Gradient (GPG) algorithm
to propose a novel stage partition method.

e Through evaluation on various heterogeneous models and
devices, we verify that the proposed method outperforms

the state-of-the-art in both asynchronous-single-model and
asynchronous-multi-model scenarios. We also verify the
feasibility of improving the throughput for a single model
by increasing its concurrency or batch size, and TOP can
increase the benefit.

II. RELATED WORK

Operator parallelism for single-model acceleration: Some
current mainstream deep learning inference frameworks take
use of operator-level parallelism to speed up inference. Before
executing operators, TensorFlow [18] builds a tensor-based
static computation graph through the compilation phase, and
then executes the operators sequentially. PyTorch [19] is a deep
learning framework that can dynamically configure computation
graphs, which means that it does not need to generate com-
putation graphs through the compilation phase. Operators are
also executed sequentially in PyTorch. As a machine learning
compiler for optimizing inference, TVM [13] abstracts DNN
into a unified intermediate representation, and takes use of the
learning-based scheduler to generate an optimal schedule to
execute operators efficiently on GPU. The above frameworks
focus on optimizing the intra-operator parallelism. Due to the
limited parallelism within the operator, the hardware utilization
is usually low. Therefore, some work began to optimize the
inter-operator parallelism to improve the utilization of hard-
ware and further accelerate inference. TensorRT [14] accelerates
inference through a series of technologies (such as pruning,
quantization, operator fusion, etc.), and constructs computation
graphs according to multi-stream processing technology of GPU
to execute operators in parallel. IOS [10] takes advantage of
dynamic programming (DP) to divide CNN into multiple stages,
and each stage utilizes operator merge or concurrent execution
to accelerate inference.

Both intra-operator parallelism and inter-operator parallelism
can improve the utilization of hardware, thus speeding up infer-
ence. However, the above work is aimed at a single model, with
few branches and limited schedulable space. On today’s more
and more resource-rich hardware, peak performance cannot be
achieved.

Operator parallelism for multi-model acceleration: Multi-
model inference has numerous parallelizable branches, which
makes inter-operator scheduling more flexible, but also brings
more challenges, such as the increase of scheduling space and
resource contention among models. Wang et al. [20] proposed
Horizontally Fused Training Array (HFTA) for model training.
HFTA fuses operators of the same type and shape in multiple
models, then trains the fused model on a shared accelerator
to improve hardware utilization and speed up model training.
Yu et al. [15] proposed an efficient resource-aware schedul-
ing framework for the multi-tenant DNN inference on GPU.
The framework utilizes the unified intermediate representation
and learning-based search algorithm to generate the optimal
schedule, so that the appropriate operators in various DNNs
can be centralized in the same stage for parallel execution. The
algorithm can maintain a balanced resource utilization through-
out the inference process, and eventually improve the runtime

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on March 31,2025 at 02:28:20 UTC from IEEE Xplore. Restrictions apply.

268 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 2, FEBRUARY 2025

(b) Multi-Process Service

4

(. - -GPUPltorms ____ ________________)
e o o o] o om i e e | (|
I TShared Stréam | T 1 IZW_I IZW—I [EW_] 1 L |
B | Multiprogessors | B | ISM;I:‘_SM;_.[SM;] !

B |(SMs) | | « T RETRrra
D O T !
HEEEEE » EEEECC
[Shared Memory Bandwidth] : [Shared Memory Bandwidth] :
| i
1 1
1 1
1 1
1 1
1 1
1 1
1 1

(=]

jok

II: ;![
=i

Fig. 1. Multi-task deep learning inference on GPU.

efficiency. Zhang et al. [11] proposed a framework POS that
addresses the optimization of multi-model inference in edge Al
applications. By combining four operator scheduling strategies,
POS achieves significant improvements in both inference speed
and GPU utilization.

Current multi-model operator-level acceleration techniques
are designed for offline static optimization in synchronous
tasks. However, when the task frequencies of the models are
different (i.e., asynchronous tasks), the inference progresses of
task instances are dynamically changing. Consequently, offline
optimization is not applicable, and the static computation graphs
may result in ineffective scheduling or substantial synchroniza-
tion overhead.

III. BACKGROUND AND MOTIVATION
A. Multi-Task Inference System

As shown in Fig. 1, today’s GPU platforms are increasingly
rich in computing and memory resources, with corresponding
software providing high concurrency support to users, such as
NVIDIA’s CUDA Multi-Stream [2], Multi-Process Service [3],
and Multi-Instance GPU [4]. With the collaborative develop-
ment of hardware and software, it is now possible to deploy
multiple DNNs on a single machine to process the inference
requests for different data sources concurrently [6]. Such devices
with certain computility that can be deployed with multiple
inference services usually act as the server. The data sources
are typically various terminal devices that act as clients, which
are usually resource-constrained devices that lack computility
and can only collect data (such as sensors). Therefore, the client
needs to continuously send data to the server to assign inference
tasks, and the server needs to efficiently process the requests
from different data sources [12]. These requests (tasks) can be
seen as inference instances of different DNNs deployed, so their
resource overheads are different.

Many AI+IoT (AIoT) scenarios at the edge or in the cloud can
be abstracted into this client-server pattern [21]. For example,
edge devices in large intelligent manufacturing lines, servers de-
ployed with multiple Al services in data centers, and embedded

CAvg. Latency of Tasks
(®Avg. GPU Utilization

GPU Utilization (%)

1 60 120180240
Task Frequency (FPS)

Fig. 2. The test results of ResNet-50 optimized by IOS in the asynchronous-
single-model scenario.

devices on autonomous vehicles need to continuously receive
data from various sources and invoke the corresponding DNN5s
for inference.

B. Computation Graph and Operator-Level
Inference Acceleration

In order to provide high-quality inference services and mit-
igate resource contention across different tasks, the server-
side devices require coordination of software and hardware
for resource scheduling at different levels. Fine-grained-level
scheduling can flexibly consider fluctuated resource consump-
tion [12]. Compared with model- and layer-level scheduling,
operator-level scheduling performs better for mixed models with
different complexities. This is because under coarse-grained
scheduling, the execution of large models may inhibit the exe-
cution of small models, which can be alleviated by fine-grained
scheduling. Therefore, lots of work goes deep into operator-level
optimization [10], [11], [15].

The computation graph is an intermediate representation that
connects the DNNs with the underlying execution engine. A
DNN model can be represented as a computation graph, where
vertex set is an abstraction of operator set, and edge set rep-
resents the dependency between operators. According to the
characteristics of DNN, the computation graph is a directed
acyclic graph (DAG). Each operator in the graph can be a
convolution calculation or matrix multiplication, etc. The edge
(u,v) from vertex u to vertex v is a tensor that is the output
of operator u and the input of operator v . Generally, due to the
difference in operator types and input shapes, the operators have
different computational loads and resource overheads. During
the inference process, the operators will be executed sequentially
or concurrently according to the strategies formulated on the
computation graph, to enhance inference efficiency and resource
utilization while mitigating the contention.

C. Acceleration Test for Asynchronous Inference in
Single-Model Scenario

In the scenario of multi-task inference, we first test the per-
formance of the advanced single-model operator scheduling
method IOS [10]. We preload ResNet-50 [22] on NVIDIA
GeForce RTX 3080 [23] and utilize IOS to schedule the op-
erators, then assign inference tasks to it at different frequencies.
As shown in Fig. 2, when the task launch frequency is very low
(e.g., 1 FPS), the average inference latency is 6ms. Therefore,

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on March 31,2025 at 02:28:20 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: TOP: TASK-BASED OPERATOR PARALLELISM FOR ASYNCHRONOUS DEEP LEARNING INFERENCE ON GPU 269

mAvg. Latency of Tasks
#Avg. GPU Utilization

GPU Utilization (%)

ResNet-50 + Inception V3

Fig. 3. The test results of ResNet-50 and Inception V3 optimized by POS in
the asynchronous-multi-model scenario.

when the task launch frequency is less than m(z 167) FPS,
there is no temporal overlap among inference instances, i.e.,
no pipeline parallelism among tasks, so they do not affect each
other, and the average inference latency is the lowest, but due
to the low parallelism, the GPU utilization is very low. When
the task launch frequency is greater than 167 FPS, pipeline
parallelism occurs among instances. However, IOS does not take
into account the pipeline parallelism, resulting in resource con-
tention even when the GPU utilization is below 50%, ultimately
leading to an increase in average task latency. Therefore, there
is still room for operator-level optimization in the asynchronous

inference scenario.

D. Acceleration Test for Asynchronous Inference in
Multi-Model Scenario

Due to the limited branches, a single model cannot fully utilize
resources to achieve the peak performance on resource-rich
hardware even after optimization. While multi-model inference
can introduce more parallel branches and improve hardware
utilization, but it also brings more severe resource contention.

Similarly, we also test the average inference latency and GPU
utilization under different task frequencies in the asynchronous-
multi-model scenario, after optimizing with the state-of-the-art
multi-model operator scheduling method POS [11]. Taking two
models, ResNet-50 and Inception V3 [24], as an example, we
preload them on NVIDIA GeForce RTX 3080. After optimiza-
tion with POS, we assign inference tasks to the two models at dif-
ferent frequencies. As shown in Fig. 3, the GPU utilization in the
multi-model scenario does increase by around 25% compared
to the single-model scenario. However, when the frequency
difference between the two models increases (e.g., 60 + 120 and
120 + 60), despite the overall task frequency decreasing (com-
pared to 120 4 120), the average inference latency increases,
and the GPU utilization is only around 60%. In addition to
not considering the optimization of pipeline parallelism, this
is because multi-model optimization methods like POS assume
that all models share the input, i.e., they aim at synchronous
tasks, which makes it easier to perform offline optimization
according to the original computation graph and hardware plat-
form. However, when the task frequencies of the models are
different (i.e., asynchronous tasks), the inference progress of task
instances is diverse, so the optimization is not applicable. The

static computation graph may result in ineffective scheduling or
significant synchronization overhead.

E. Summary

For multi-task inference systems, existing operator-level
single- and multi-model optimization methods do not consider
the situation of pipeline parallelism among the tasks of the same
model, which will introduce more optimization potential. Com-
pared to single-model optimization, multi-model optimization
can improve hardware utilization, but the existing operator-level
optimization assumes that the inputs of all models are syn-
chronous. For some multi-source inference systems, different
models need to take use of different data for inference. In such
cases, the models cannot share the input. The asynchronization
of input data makes it difficult for offline optimization to adapt to
the dynamically arriving tasks, leading to invalid scheduling or
excessive synchronization overhead. Therefore, for such asyn-
chronous tasks, it is necessary to design operator scheduling
strategies that are consistent with the inference progress of
each model according to the task pattern, and make reason-
able resource allocation to avoid the backlog of high-frequency
tasks. Dynamically scheduling at such a fine-grained level is a
great challenge, so we have to design a very efficient search
framework.

IV. PROBLEM DEFINITION

Model, task, queue, and task launcher: Suppose multiple
DNN models W = {wq, wa, ..., wy } are preloaded on the de-
vice to process various tasks [6]. The device has W task queues,
which cache the inference tasks Q™ = (¢, ¢y, ¢3",...) of
each model. The task launcher can adjust the dequeue frequency
of each queue to control the congestion of tasks under the
premise of maintaining the high utilization of GPU, that is, it
can control the number of current inference instances according
to the resource situation. The dequeued tasks will be distributed
to the corresponding models for concurrent inference.

Block: Modern DNNSs are typically constructed by stacking
multiple blocks, allowing each block to be optimized separately.
For example, each residual block of ResNet [22] is a block, each
Inception module of Inception V3 [24] is a block, and each Fire
module of SqueezeNet [25] is a block.

Pipeline parallelism and inference progress: As shown in
Fig. 4, let B = {b}",b5",..., b } be the set of blocks of
model w;. When models W execute tasks concurrently, at a
certain time t, there are N inference instances (i.e., the tasks
being inferred) Z,"* = {q}", ¢4’ , ..., ¢y } of model w;. An
instance can be a batch of inferences. Suppose these instances
infer to blocks B, = {by, by, ..., b} } respectively, then the
current inference progress of model w; is P,"* = B;"*. In order
to reduce the scheduling space, here the block is the pipeline
granularity.

Inter-block scheduling for asynchronous tasks: Our objective
is to jointly optimize the task launcher and inter-block scheduler,
so that they can generate an optimal pair of dequeue frequency
and block combination scheme according to the current state.
The objective is to enhance resource utilization, increase system

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on March 31,2025 at 02:28:20 UTC from IEEE Xplore. Restrictions apply.

270 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 2, FEBRUARY 2025

Optimizing the red blocks is effective!

(Dequeue Frequency f,)
(Dequeue Frequency f,)
= a a

(Dequeue Frequency f3)

D Block of model A D Block of model B

Inference progress of each task
Block of model C . instance at a certain moment

Fig. 4. Under the specific task arrival pattern, each DNN has different pro-
cessing progresses. We need to design an effective operator parallel strategy
according to the progresses.

<

(a) Operators V' (b) E7 is an end- (c) Not an ending (d) Partition the
ing of V' of V graph by endings
recursively

Fig.5. E;isanending of V if and only if there is no edge from E; to V — Ej.

throughput, and reasonably allocate resources to avoid task
backlog.

Specifically, for inter-block scheduling, we combine some
blocks of all models for subsequent intra-block operator schedul-
ing, and finally find the optimal combined block for each block.
Each combined block corresponds to an inference progress
Po={PP P, PP

For task launcher, we determine the optimal dequeue fre-
quency of various tasks according to the impact of task pattern
on the inference progress of each model, so as to control the
inference progress and make the operator scheduling effective.
The task launcher also acts as a resource allocator to avoid the
backlog of certain tasks by adjusting the dequeue (processing)
frequency of various tasks. At the same time, the task launcher
should achieve congestion control on the premise of ensuring
resource utilization to avoid hardware idle due to low task
frequency or resource contention due to high task frequency.

Intra-block scheduling: We continue to optimize fine-grained
operator parallelism in the combined block. Here we imitate the
idea in IOS [10] (as shown in Fig. 5), and recursively select the
endings of vertex (operator) set V' in the combined subgraph to
partition it into multiple stages. Vertex subset F; is the ending
of V if and only if there is no edge from E; to V — E;, thereby
ensuring that dependent operators are executed sequentially. As
shown in Fig. 6, the stages are executed sequentially, from top to
bottom. The operators with edges connected in the stage belong
to the same group, and the operators in the group are executed
sequentially due to dependencies. Multiple groups can be formed
in a stage, and the groups are executed in parallel. In this way,
we can limit resource allocation and contention within the stage.

Block i — 1 Output Merge
Block i Input Split)

oP3 |
Stage 1 :Group 1.2
oP6 |
Stage 2
1
1
1
Stage 3 1Group 3.2

lock i Output Merge
(Block i + 1 Input Split)

Fig. 6. Block, stage, group diagram. After intra-block operator scheduling,
block 7 is divided into 3 stages, and the 3 stages are executed sequentially. In
stage 1, operator 3 and operator 6 belong to the same group, so they are executed
sequentially, while concurrently with operator lin another group. Similarly, in
stage 2, operator 2 and operator 5 are executed sequentially, while concurrently
with operator 4. In stage 3, operator 8 and operator 9 are executed sequentially,
while concurrently with operator 7.

In TOP, tasks of the same model are pipelined in parallel
by blocks, so the transitive (dependent) closure of vertices
(operators) among different instances of the same model can be
cut off, which will lead to more optional endings in the combined
block and improve parallelism.

The problem is defined as: how to select ending F; at each step
to minimize the overall execution latency of V. The dynamic
programming algorithm used by IOS selects a more effective
parallel strategy according to the cost function. The cost function
is defined as the latency of running the computation graph. How-
ever, in our TOP scenario, the scheduling space of the combined
block is much larger than that of the original block, resulting
in a long search time for dynamic programming. Therefore,
this paper proposes a learning-based stage partitioning method,
which pre-trains an intra-block scheduler. In the subsequent
stage partitioning, there is no need to traverse all situations.

V. METHODOLOGY

Due to the vast scheduling space, it is impractical to directly
schedule all operators of the model set. Furthermore, since
the structure of DNNs is diverse, manual schedule tuning re-
quires considerable effort and lacks scalability. Therefore, we
utilize multi-agent reinforcement learning algorithm MADDPG
and GNN-based Policy Gradient (GPG) algorithm to achieve
efficient collaborative optimization among model-level (task
launcher), layer-level (inter-block scheduling), and operator-
level (intra-block scheduling).

MADDPG is used to coordinate the task launcher and model
scheduler. The model scheduler includes inter-block schedul-
ing and intra-block scheduling. Inter-block scheduling directly
collaborate with the task launcher, while GPG is used to per-
form more fine-grained intra-block graph encoding and operator
scheduling on the results of inter-block scheduling, generating
the final computation graph, so as to affect the performance
(reward) of MADDPG’s decision-making at each step.

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on March 31,2025 at 02:28:20 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: TOP: TASK-BASED OPERATOR PARALLELISM FOR ASYNCHRONOUS DEEP LEARNING INFERENCE ON GPU 271

— _—Average Task Latency, Task Backlog, Resource Utilization

Task | | Optimize [Deq
(Resource Allocator) | "\ | Frequency

ICooﬁ;‘rate
|

Deploy

Model Scheduler | Optimize [C.
Graph

Inter-Block | Intra-Block |~ L

State

O a—

Fig. 7. The offline scheduling framework of TOP.
e B N N\
Optimized \ Ier [Optimized
/ Task Launcher T Dequeue
((R All) \ Freq Y
Ve | Deploy
(A
\ Optimized | Optimized
™ Model Schedul Infer,| ¢ i
| (Unter-Block p{intra-Block]| Graph
N N State Yos ~22 L
Fig. 8. The online execution framework of TOP.

A. Framework

As shown in Figs. 7 and 8, the TOP framework is divided into
two phases: offline scheduling and online execution.

In the offline scheduling phase, the task launcher and model
scheduler jointly optimize the dequeue frequency and compu-
tation graph, and obtain the specific state and task processing
results by deploying the optimization results on a specific device.
The cost model calculates the reward through the task processing
results and feeds it back to the task launcher and model scheduler
for further learning and optimization.

In the online execution phase, the optimal task launcher and
model scheduler have been obtained through offline training.
They can infer the optimal dequeue frequency and computa-
tion graph under the current state. The dequeue frequency and
computation graph are re-inferred and deployed only when the
variance of the number of tasks in each queue exceeds a certain
threshold 7. This can not only avoid the task backlog, but also
eliminate the runtime overhead as much as possible.

B. MADDPG-Based Frequency Adjustment and
Block Combination

MADDPG [17] models the optimization as a multi-agent
Markov Decision Process (MDP), selecting an optimal action
at each step to transition the state to a state that is conducive
to the cumulative future reward. After convergence (Nash equi-
librium), the algorithm can determine the optimal dequeue fre-
quency of each queue, and find the optimal combined block for
each block according to the current state. The specific compo-
nents are described as follows:

S (State): during the execution of tasks, we randomly sample
n times the inference progress P; of all models and the deviation
dy,ds, ..., dy of the number of tasks in each queue, then stack
n samples into state s;, with dimension n x (W + ZZl B;).
Equation (1) is a concrete example, where 1 corresponds to the

028 ——— N s ouee o
a?: 0.40| peq req I&:% Isec)
0.03 Task Queue Q"2
Dequeue Frequendy f; = r}m (task/sec)
| | | | | | ‘ Task Queue 93
Model w, Model w,
Input Input
Fig. 9. An example of task launcher action a? (W = 3).
Model w;
Blocks
0.98|
0.40
0.03
0.23
a,l =/0.50
0.43
0.01
0.22)
10.54|
Combined
Blocks s/
I Y T Y N S S N MY N MY N MO N N B |
0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1
Fig. 10. Anexample of model scheduler action {a% R af, R afv} (W = 3).
The three models are divided into five combined blocks.
progress.
w1 w1 WY
bUt DY Y dy dyw
1f1 0 - 1 dp, dyw
21 0 1 0 das do.w
St = 3 0 0 1 d3’1 d37W (1)
n 1 0 s 0 dn,l de

A (Action): one agent acts as the task launcher, and the action
aY is the task launch interval (sec/task) corresponding to the W/
models, so the dimension is /. We limit the action value to
(0,1], that is, the minimum dequeue frequency of each queue is
1 task/sec. Fig. 9 is an example of three models (queues).

W agents act as the model scheduler, responsible for W
models respectively, and the actions are a; , a2, . .., a}". Fig. 10
is an example of three models divided into five combined blocks.
The action value of each agent is limited to [0,1], and the
dimension is the number of blocks in model w; (usually less
than 10). According to the total number of blocks, [0,1] is divided
into uniform intervals. When the action value falls in a certain
interval, the corresponding block is combined with other blocks
falling in the interval. If there is only one block in the interval,
the block will not be combined with any other blocks. If there
is no block in an interval, the combined block is invalid. By
dividing the interval, it also tolerates certain action prediction
errors.

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on March 31,2025 at 02:28:20 UTC from IEEE Xplore. Restrictions apply.

272 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 2, FEBRUARY 2025

Algorithm 1: MADDPG-Based Inter-Block Scheduling.

Input: s,,&;,1;,0; of each step t, original computation graphs GS™, G§"*, - - | G¢ri, thresholds T, H, replay_size

1 Initialize system parameters;
2 Offline scheduling:
3 while true do

4 for i<-0 to W do

5 | ai_y <+ p'(si-1)s

6 end for

7 | Combine blocks according to aj_y,a? 1, ,af’;

8 if maximum size of the combined blocks > H then

9 | o1 0

10 else

11 Use Algorithm 2 to optimize each combined block, get the stage_str, and store it in stage_dict;
12 Reconstruct combined blocks according to stage_str to build a new computation graph G7.5%,. .
13 Each queue dequeues tasks according to the frequency af_;;

14 Use GI'¢Y, . .. to process the tasks concurrently;

15 Sample n groups of progress and deviation to form s;;

16 Calculate r;_1 using Eq. (2);

17 end if

18 ap—1 {a?—hatl—lv"' 7atmil};

19 Store transition (s;—1,a;—1,7¢—1,S¢) in replay buffer D;

20 if len(D)> replay_size then

21 | Sample batches of transitions from D to update @9, Q},---, Q) p", p*,---, p" using Egs. (3) and (4);
22 end if

23 t—t+1;

24 end while

25 Online execution:
26 t < 0;

27 while true do

28 Each queue dequeues tasks according to the optimal frequency;

29 Use the optimal computation graph to process the tasks concurrently;
30 if o; > T then

31 Sample n groups of progress and deviation to form s;;

32 for i<—0 to W do

33 | ai < p'(se):

34 end for

35 Set dequeue frequency according to a;

36 Combine blocks according to a},a?,--- ,a}";

37 Get stage_str of the combination strategy from stage_dict;

38 Reconstruct combined blocks according to stage_str to build the optimal computation graph;
39 end if

40 t<—t+1;

41 end while

R (Reward): the immediate reward r; of step ¢ is calculated
by the following parts under the dequeue frequency and com-
putation graph corresponding to action a;: the average GPU
utilization &,, the average inference latency Z; of the tasks for
model w;, and the variance o; of the number of remaining tasks
in each queue, as shown in (2), where E: , Z;*, oy are the Z-score

normalized value of £, Z;, oy, respectively. a, b, c are the weights
assigned to the three components.

2

. &b 1) /W —co
ry=4q
i =

ik
eaftfbl,, —coy

i=1,2,... W

The specific process is shown in Algorithm 1. During offline
scheduling (training), to avoid mutual interference and inac-
curate measurement, the scheduler runs serially with DNNs.
During online execution, the scheduler runs in parallel with
DNNSs to improve task execution efficiency.

Offline scheduling: At each step t, according to state s;_1, use
MADDPG to infer the current dequeue frequency a?_; and block
combination strategy a}_;,a? ;,...,a}"; (lines 4-6). Lines 8-9
introduce threshold H for pruning (Section V-D). We perform
fine-grained operator scheduling in each combined block using
the pre-trained GPG algorithm (Section V-C), and store the
result stage_str in stage_dict (line 11). Then reconstruct the

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on March 31,2025 at 02:28:20 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: TOP: TASK-BASED OPERATOR PARALLELISM FOR ASYNCHRONOUS DEEP LEARNING INFERENCE ON GPU 273

combined blocks according to the stage_str to generate a
new computation graph (line 12). Each queue dequeues tasks
according to its own frequency (line 13), then the computation
graph is used to process the tasks concurrently (line 14). At the
same time, sample n groups of progress and deviation to form the
next state s; (line 15). Since the performance (2:71, Z:,l, of 1)
is obtained after finishing inference, we adopt the experience
replay technique [26] to update MADDPG. After processing
the tasks at the end of each step, the reward is calculated using
(2) (line 16), and the transition (s;_1, a;—1,7¢—1, $¢) is stored in
the replay buffer D (lines 18-19). After the number of transitions
in D reaches replay_size, we use (3) to update the parameter gl
of value network Qz for agent ¢, where 7 is the discount factor, n

is the learning rate, @Z/ is the target network, and p’ is the target
policy. We also use (4) to update the parameter ¢’ of policy
network p’ for agent 4 [27] (lines 20-22).

e e —n-y VaQh(si—1,a-1),

where y = ri,l + ’y@;(«% at)|at:p’(st) 3)
Lpi — <pi +n- Vw/’i(aifl‘stfl)'

Vi Qp(st-1500-1)ai —pi(siy))

Online execution: At each step t, each queue dequeues tasks
according to the optimal frequency (line 28), then the optimal
computation graph is used to process the tasks concurrently (line
29). When the variance of the number of tasks in each queue
exceeds threshold 7" (line 30), sample n groups of progress and
deviation to form the state s; (line 31). Then use the well trained
MADDPG to infer the dequeue frequency and block combina-
tion strategy (lines 32-36). Get the corresponding stage_str of
the combination strategy from stage_dict (line 37), and build a
new computation graph according to the stage_str (line 38). By
setting the threshold 7', the runtime overhead caused by frequent
decision-making and graph reconstruction can be significantly
reduced.

C. GNN-Based Learning for Intra-Block Operator Scheduling

In our TOP scenario, the scheduling space within the com-
bined block is much larger than that within the original block,
which leads to long search time of the existing operator schedul-
ing methods. Therefore, we further propose a learning-based
stage partitioning method. The method pre-trains an intra-block
scheduler so that in the subsequent stage partitioning, it does not
need to traverse all the cases and profile each stage’s latency,
greatly reducing the scheduling time. In each recursion, we
encode the computation graph V' into an embedding via GNN,
and then input the embedding to a policy network that will output
an index of the selected ending.

1) GNN-Based Computation Graph Encoding: There are
two disadvantages in directly stacking the vertex and edge
information of a computation graph into the state: () processing
a high-dimensional state requires a complex policy network,
which is difficult to train to convergence; (:¢) it is impossible to
efficiently model the structure and operator information of the
computation graph, making TOP hard to generalize to various

Fig. 11.

Two-layer embedding for computation graph.

DNNS . Therefore, we utilize Graph Neural Network (GNN) [28]
to encode the computation graph into an embedding.

We define the raw state of each vertex (operator) v; in the
computation graph as s,, s, including: (i) the operator type,
(i7) the shape of the input, (ii7) the shape of the output, (iv) the
convolution stride for each dimension, (v) the convolution kernel
size, (vt) the padding for each dimension, (vii) the number of
groups in the convolution, (vi%) the activation function (relu,
sigmoid, tanh, identity), (ix) the pooling type (max, avg, global
max, global avg).

As shown in Fig. 11, given the state s,,, ; of each vertex/node
v; € V in the computation graph, we propagate the state infor-
mation {s,, ;|v; € V'} from top to bottom along the graph and
finally embed it into the leaf nodes {e., ;|v; € Vieqs}, that is,
{8u0;.t|vi € V} = {ey, +|vi € Viear}. Specifically, we traverse
each node v; € V in the graph from top to bottom. v; calculates
its own embedding e,,, ; by aggregating the embedding informa-
tion of all its parent nodes and its own state s,,, ¢, as shownin (5),
where F (v;) is the set of parent nodes of v;, hi(-) and ¢, (-) are
non-linear transformations implemented by neural networks as
aggregation functions. The whole top-down embedding process
finally stops at the leaf nodes.

> gilen)| +su)

vjeF (vi)

e’lji,t = hl

Since the node state information propagates along the edges
from top to bottom, the propagation also implicitly embeds the
edge state information (i.e., the dependencies of operators) of
the computation graph.

Finally, in the second-layer embedding, we use (6) to embed
all current leaf nodes, that is, {€,, ¢|v; € Vieas} — 2¢, Where
ha() and go(-) are aggregate functions that are isomorphic to
hi(-) and g1 (+), but have different parameters.

Zt:hg

> galen) ©

7)i€Weaf

The first-layer embedding only needs to embed the node set V'
once from top to bottom. Since the subsequent recursion is from
bottom to top, the first-layer embedding can be reused directly,
and only the second-layer embedding for the new leaf nodes
needs to be recalculated.

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on March 31,2025 at 02:28:20 UTC from IEEE Xplore. Restrictions apply.

274 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 2, FEBRUARY 2025

Select an Ending Ejp,xp) Of V
Stages < Stages U E|m,xm|

Endings of V

Policy
Network

Operators V

Stages

Fig. 12. Intra-block operator scheduling flow chart.

2) GNN-Based Policy Gradient (GPG) Algorithm: Asshown
in Fig. 12, we use a policy function pi(z¢; @) to predict action
under state z;, and an action-evaluation function ¢(z;, My; w)
(only in the training phase) to predict the value of each action
under state z;.; and ¢ are non-linear functions implemented
by neural networks with parameters of 8 and w. The action
space M is the ending set F of the current computation graph
V', with a size of M. Due to the large action space, we take
use of one-dimensional continuous action. The output action
0 < my < 1isa continuous value, and the index of the selected
ending is [m; x M |. Then E|,,,) is the stage for recursive
step ¢. At the end of each step, we remove E|,,, s from V.
The recursion ends when V' = &.

There is only individual operator difference between index-
adjacent endings in F, so although our algorithm may have some
prediction errors for the continuous action m;, which cannot
guarantee the optimality, the performance is not much worse,
that is, a large amount of traversal time is saved by sacrificing a
small amount of performance.

In order to guide the learning of all network parameters, at the
end of each recursion, a reward u; = e ** will be generated, [,
is the execution latency (ms) of the ending selected at recursive
step . Since the optimization objective of policy learning is
to maximize the expectation of cumulative future reward, the
introduction of u; can minimize the execution latency of the
whole computation graph after all the recursive steps.

At each recursion, according to (zy, my, ug, z¢11), we adopt
the Temporary Difference (TD) algorithm [29] to update w, as
shown in (7), where d; is the TD error. Let 8" be the parameters
of GPG networks {h1(-), g1(-), ha(+), g2(+), u() }. We adopt the
deterministic policy gradient algorithm [27] to update 6, as
shown in (8).

W w—1n-0 - Vog(ze, myw) (7)
0" — 0" +1-Vou(z:0") - Viq(ze, u(z4:0%);0) (8)

The intra-block optimization process is shown in Algorithm 2.
First, use (5) and (6) to encode the computation subgraph V into
embedding z; (line 3), and store the intermediate embeddings in
dictionary emb_dict for later reuse (line 4). Then start recursion
until V' = & (line 5). In each recursion, search for the endings
FE of V that satisfy the pruning thresholds r and s. The number
of groups in E do not exceed s, and the number of operators in

Algorithm 2: GPG-Based Intra-Block Scheduling.

Input: Computation subgraph V, thresholds 7, s
Output: stage_str

1t+0;

2 Stages < @;

3 Encode V into an embedding z; using Egs. (5) and (6);

4 Store all the intermediate embeddings in emb_dict;

s while V # @ do

6 Search iteratively for all endings ' of V satisfying

the thresholds 7 and s;

7 M <+ len(FE);

8 my < po(2t);

9 index < |my X M|;

10 Insert E;, 4., before the head of Stages;

1 V+ V- Einde:r;

12 leaves <+ LeafNodes(V);

13 Get the embeddings {e,,|v; € leaves} from
emb_dict;

14 Embed {e,, |v; € leaves} into z;41 using Eq. (6);

15 if ©s_training then

16 Measure the latency I; of stage Findes;

17 wp — el

18 Update q., and pg+ according to

(z¢, My, ug, z¢11) using Egs. (7) and (8);
19 end if

20 t+—t+1;

21 end while

22 stage_str «— Stage2String(Stages);

23 return stage_str;

each group do not exceed r (line 6). Then input 2z, into the pre-
trained policy network g to output the continuous action my,
and calculate the index of the target ending. Insert the ending
FEinder as astage before the head of Stages (lines 7-10). Remove
FEinder from V and get the embeddings of the leaf nodes of new
V from emb_dict. Embed the leaf nodes into z;11 using (6)
(lines 11-14). If it is in the training phase, test the execution
latency of E,4e, to calculate the reward u,;, and use (7) and
(8) to update the value network ¢, and the policy network (i
according to (z¢, m¢, ut, Z¢11) (lines 15-19). Then enter the t +
1 recursion (line 20). After all the recursive steps, output Stages
in string format (lines 22-23).

We pre-train GPG for different platforms using various block
combinations in the model set, and it can generalize well to most
of DNNs after convergence. Then the pre-trained Algorithm 2
will be invoked by Algorithm 1 (line 11). This eliminates the
need to profile each stage’s latency through execution during
search, so it is very efficient. Furthermore, in the pre-training
and search phases, a large number of intra-block GPG results
are stored for subsequent reuse. This will avoid the interaction
between intra-block scheduling and task processing during on-
line execution.

D. Reduce Optimization Time

Inter-block pruning: Section VI-E verifies that on various
devices, due to the limit of hardware resource, the performance

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on March 31,2025 at 02:28:20 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: TOP: TASK-BASED OPERATOR PARALLELISM FOR ASYNCHRONOUS DEEP LEARNING INFERENCE ON GPU 275

of the combined block (i.e., the number of instances being
executed concurrently) to a certain size no longer improves,
and as the size increases, the intra-block optimization cost
also shows an exponential growth. Therefore, it is necessary
to find a suitable threshold H for each device. When the number
of sub-blocks contained in the combined block exceeds the
threshold H, we call it a superblock. The performance of the
superblock has reached saturation on the corresponding device,
and the intra-block optimization cost is very high. Therefore, if
MADDPG generates a superblock, we will no longer perform
subsequent intra-block optimization in it, but instead return
a penalty (r; = 0), and maintain the previous state, dequeue
frequency and computation graph. This can greatly avoid time
explosion and memory overflow.

Intra-block pruning: 10S [10] reduces the number of se-
lectable endings per recursion by limiting each ending (stage)
to a maximum of s groups and r operators per group, thereby
reducing optimization cost. This is a trade-off between opti-
mization cost and effectiveness. We also utilize this mechanism
to reduce the action space of GPG to accelerate training.

VI. EVALUATION

A. Implementation

We implement MADDPG and GPG based on Python, and
implement the underlying execution engine based on C++. The
latency of the computation graph is measured in the execution
engine to guide the scheduling of the upper level. The execution
engine is modified based on the cuDNN library provided by [30]
and supports the parallel execution of operators. In order to
achieve operator parallelism, we put the operators into different
CUDA streams. If there are enough computing resources, the
cores in different CUDA streams will execute in parallel. For
high-performance GPUs that are equipped with both CUDA
Cores and Tensor Cores [31], [32], due to the more significant
acceleration effect of Tensor Cores on deep learning inference,
the supported operators are preferentially dispatched to Tensor
Cores if they are idle; otherwise, the operators will be dispatched
to idle CUDA Cores.

We do not instantiate a computation graph for each task, which
would result in significant memory overhead. In the underlying
execution engine, we only save one graph instance for each
model. Therefore, in order to prevent the intermediate results of
multiple inference instances of the same model from covering
each other, we set that only one inference instance of each model
can exist in each sub-block, and cache the intermediate results
of each inference instance between blocks until they are used by
the next block of the inference.

In order to prevent deadlocks and additional synchronization
overhead, we do not set up any other synchronization mech-
anisms throughout the entire execution process. The effective
input ratio Ratio;, of a combined block is defined as the ratio
of the number of sub-blocks that have obtained input values
to the total number of sub-blocks. The combined block with a
higher Ratio;, will be executed first, and only the sub-blocks
that have obtained input values will be executed, without waiting

TABLE I
DEVICES INFORMATION

Device | GPU | Memory [Computility
Jetson Nano | 128 E,IUDA Cores | 4GB 0.5TFLOPS
axwell
Jetson TX2 | 20 CUDA Cores 3GB 1.3TFLOPS
Pascal
384 CUDA Cores
Xavier NX +48 Tensor Cores 8GB 6.8TFLOPS
Volta
6912 CUDA Cores
Server +432 Tensor Cores 40GB 19.5TFLOPS
A100

for the inputs of other sub-blocks to arrive. Combined blocks
with Ratio;, = 0 will not be executed.

B. Experimental Setup

Baselines: We compare TOP with the current mainstream
scheduling framework in single-model and multi-model scenar-
ios. In the single-model scenario, TOP will be compared with
TensorFlow, PyTorch, TensorRT, TVM and I0S. In the multi-
model scenario, TOP will be compared with the state-of-the-art
multi-model operator scheduling method POS. These methods
are introduced in Section II.

The metrics include the average throughput (FPS), GPU
utilization (the number of active warps between two times-
tamps [10]) and variance of the number of remaining tasks in
each queue. In the following results, the acceleration ratio is
the relative value of the average throughput under each setting,
and the optimization cost ratio is the relative value of the
optimization time under each setting.

Devices: In order to explore the results of operator parallelism
under different resource conditions and verify the resource
awareness of TOP, we test TOP on a variety of heterogeneous
GPU devices, including three resource-constrained edge devices
(NVIDIA Jetson Nano [33], NVIDIA Jetson TX2 [34], NVIDIA
Xavier NX [31]) and a resource-rich server equipped with
NVIDIA A100 [32]. See Table I for specific information about
these devices.

Deploying our scheduler on some resource-constrained em-
bedded devices (such as Nano, TX2, NX) may cause insufficient
memory and even affect the execution of DNNs. Therefore, for
resource-constrained edge devices, we consider separating the
scheduler to the cloud, utilizing the distributed scheduling and
task execution mode. As shown in the framework of Figs. 7
and 8, the cost model, task launcher, and model scheduler can
be deployed in the cloud to accelerate scheduling and separate
the scheduling cost at the edge. When optimization results
(dequeue frequency and computation graph) are generated in
the cloud, we compress and package the results in the form of
strings, then transmit them to the edge device for analysis and
deployment. The edge device will feed back the execution state
and performance to the cloud for subsequent optimization. Here
the server also acts as the cloud.

Benchmark DNNs and task arrival patterns: As shown in
Table II, we select three DNNs: Inception V3, ResNet-50, and
SqueezeNet, which have different operator types as well as the

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on March 31,2025 at 02:28:20 UTC from IEEE Xplore. Restrictions apply.

276 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 2, FEBRUARY 2025

TABLE II
BENCHMARK DNNS AND TASK ARRIVAL PATTERNS

Task Pattern (FPS)

Model #Blocks #Operators Single- Ml
Inception V3 13 119 240 30
ResNet-50 5 87 240 60
SqueezeNet 12 50 240 120

DAcceleration Ratio (DP)
-=Qptimization Cost Ratio (DP)

DAcceleration Ratio (GPG)
«=Optimization Cost Ratio (GPG)

5 3 2000 2
= ©
325 — 1600 X
[72]

5 2 1200 3
®15 c
D 1 800 o
805 400 8
£ £
o e : o £

IS

1 2 3 4 5
Number of Sub-Blocks in the Combined Block

Fig. 13. Comparison of intra-block optimization algorithms DP and GPG on
the server in terms of overhead and effectiveness.

number of blocks and operators. In the asynchronous-single-
model scenario, only one of the three models is preloaded
on the device, and the task arrival rate is set to 240 FPS. In
the asynchronous-multi-model scenario, all three models are
preloaded on the device simultaneously, and the task arrival
rates are set to 30, 60, and 120 FPS respectively to simulate
the asynchronous multitask scenario. The input shapes are all
3 x 224 x 224. Initially, there are no tasks in each queue. Since
the more powerful the device, the faster it processes tasks, to en-
sure sufficient tasks, the task arrival rate on the high-performance
server is set to double the above.

Parameter settings: For MADDPG and GPG, we use a 3-layer
ReLU NN to implement the value network with 1024, 512, and
300 hidden units per layer. Besides, we use a 2-layer ReLU
NN to implement the policy network with 500 and 128 hidden
units per layer. For GNN, {h;(-), g;(-) }i=1,2 are all implemented
using 2-layer ReLU NN, with 64 and 32 hidden units per layer.

Discount factor v = 0.95, learning rate = 0.001, batch size
for MADDPG training is 100, weights a = 0.4,b =0.4,c =
0.2, number of samples n = 10, thresholds 7" = 2 x 105,
HNano = 27I{TX2 = 2aHNX = 37HSETU€T = 4ar = 3; § =
8, replay_size =2 x 103, The following results are the
average of five tests.

C. GPG versus DP

We compare the proposed GPG-based intra-block optimiza-
tion method with the SOTA method IOS [10], which also uses
pruning thresholds of » = 3 and s = 8 . As shown in Fig. 13,
on the server, we perform intra-block optimization in the com-
bined blocks with different number of sub-blocks. The results
show that with the increase of the number of sub-blocks, the
optimization time of dynamic programming (DP) used by I0S
increases exponentially. For well-trained GPG, as it does not
need to traverse all cases and directly predict the optimal end-
ing selection strategy for each recursion, its optimization time

& Tensorflow mPyTorch
TVM mlOS
3

o TensorRT
28TOP

- N

i b

Inception V3 ResNet-50 SqueezeNet

Acceleration Ratio

o

Fig. 14. Comparison between TOP and mainstream frameworks on the server
in the single-model scenario.

[OcuDNN-Default TPOS ETOP|
3

N

o

Acceleration Ratio
N
=N O

0 =
Inception V3 + ResNet-50 + SqueezeNet

Fig. 15. Comparison between TOP and the SOTA framework on the server in
the multi-model scenario.

& 60 560 - :

=) =} TRk A CATM

% 40 piwniAming e oAl % 40 PRI AT

~ 157 AN AR ~ v

© 20 [: 1 £ 20

2 o —-10S TOP é’_ o ---POS TOP

® ®

s 0 10 20 30 40 50 60 s 0 10 20 30 40 50 60
Time (s) Time (s)

(a) TOP vs 10S (b) TOP vs POS

Fig. 16.
scenarios.

The GPU utilization in the (a) single-model and (b) multi-model

gradually decreases by one order of magnitude compared to DP
as the scale increases, and its performance is only slightly lower
than DP. The disadvantage in performance is mainly because
our method only takes use of the concurrent execution strategy.
On the other hand, although DP takes a long time to optimize,
it is stable and the optimality can be guaranteed.

D. Comparison With Mainstream Deep Learning Frameworks

In both single- and multi-model scenarios, TOP performs
better than mainstream inference frameworks. We conduct tests
on the server, as shown in Figs. 14 and 16(a), in the single-model
scenario, TOP can accelerate by 14% to 180% compared to
mainstream frameworks, and the GPU utilization is improved
by 26% compared to IOS. As shown in Figs. 15 and 16(b), in
the multi-model scenario, TOP can accelerate by 63% compared
to POS, and the GPU utilization is improved by 14%.

This is mainly because TOP considers the situation of par-
allel task pipeline for the same model and introduces advanced
intra-block scheduling algorithm. Compared to other methods,
TOP has an additional task launcher module that can effectively
control the progress of the task pipeline and collaborate with the
model scheduler for effective scheduling to minimize synchro-
nization overhead.

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on March 31,2025 at 02:28:20 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: TOP: TASK-BASED OPERATOR PARALLELISM FOR ASYNCHRONOUS DEEP LEARNING INFERENCE ON GPU 277

220
o . e
<15 POS —TOP
10
8
&5 ° o T=2x109
g 0 ——
> 0 10 20 30 40 50 60
Time (s)
Fig. 17. Task backlogs of POS (SOTA) and TOP in the multi-model scenario.
i)
o6 180 @
5 e — .
c5 150+; [mOptimization Cost Ratio
s4 120§ |+Acceleration Ratio (Nano)
=3 9 g =Acceleration Ratio (TX2)
o2 60 & Acceleration Ratio (NX)
81 30 E ~Acceleration Ratio (Server)
1 2 3 4 5 ©
Threshold H
Fig. 18. The relationship between the upper limit threshold H of combined

block size (number of sub-blocks) and overall optimization time, and the
achievable performance on four devices.

TOP also considers the backlog of tasks in the multi-model
scenario, as shown in Fig. 17. During the processing of the
three types of tasks, TOP’s unique mechanism can maintain
the variance of the number of remaining tasks in each queue
at a low level (i.e., below the set threshold 7' = 2 x 10°). This
means that TOP can dynamically adjust the dequeue frequency
of various tasks and block combination scheme, so as to prevent
task backlog and achieve resource allocation. In contrast, POS
does not consider the backlog of tasks, so the variance gradually
increases, indicating a backlog of certain types of tasks.

E. Pruning Thresholds and Observations on Different Devices

Theoretically, the more powerful the device, the faster it pro-
cesses tasks, thus the dequeue frequency on it will be higher, and
the combined block (i.e., the number of concurrent tasks) will
be larger. We explore the relationship between the upper limit
threshold H of combined block size (number of sub-blocks)
and overall optimization time on the four devices, and test the
corresponding achievable performance. As shown in Fig. 18,
the results on the four devices show that as the threshold
increases, the performance gain gradually saturates due to the
resource bottleneck of the device, and the optimization overhead
increases significantly. This is why we set parameters Hngno =
2, Hrxo =2, Hyx = 3, Hserver = 4. The thresholds s and r
are set according to [10].

In addition, as shown in Fig. 20, by observing the optimization
results on different devices, we find that the richer the resources,
the fewer the number of stages in the computation graph, and
correspondingly, the more the number of groups in each stage.
This means that the parallelism of the operator is improved to
utilize more resource. On the contrary, the computation graph
on resource-constrained devices will be more “slender”. That is,
TOP can achieve heterogeneous resource awareness with strong
generalizability.

1.9% 16.7%

= Search for endings

% GPG decision-making

= MADDPG decision-making

§ Updating MADDPG parameters
GNN-based encoding
Graph construction and task execution

= Search for endings

7 GPG decision-making
Executing stage

= Updating GPG parameters

(@) (b)

Fig. 19. (a) Percentage of time spent at each step during pre-training GPG and
(b) Percentage of time spent at each step during training MADDPG.

«+Avg. #Stages
-Avg. #Groups in each stage

o

50 10 &
5;40 838 %
&30 63
%20 4073
#* 10 2% 0

0 0 =
Nano TX2 NX Server
Fig. 20. The graph results of TOP on four devices.
—Nano TX2 —NX —Server
1.8
® 1.6 A
cl4 MM"-“'“-W
‘a:‘; 1.? » N
14 0.8 AN
206 S et
X 04 et
0.2
0
0 1000 2000 3000 4000 5000 6000 7000
Step
Fig. 21. The training of GPG for the four devices.

F. Scheduling Overhead

We pre-train GPG for the four devices with different block
combinations in the model set, and then train the outer MAD-
DPG for the corresponding device.

The pre-training of GPG, as shown in Fig. 19(a), includes:
(7) one complete GNN-based computation graph encoding for
each combined block; at each step, (iz) the search for endings;
(727) the GPG decision-making; (iv) executing the stage on
specific device; and (v) updating GPG parameters. At each step,
the search for endings takes the most time, averaging about 6s,
and the others take less than 5s in total. As shown in Fig. 21, the
GPG can converge within 6000 steps, which takes nearly 20h in
total.

Then the outer MADDPG is trained based on the pre-
trained GPG, as shown in Fig. 19(b), where each step includes:
(¢) the MADDPG decision-making to generate multiple com-
bined blocks; (iz) one complete GNN-based computation graph
encoding for each combined block; (¢i7) average 10 times
searches for endings and GPG decision-making within each
combined block (the (iz) and (¢77) can be parallelized across
the combined blocks); (iv) updating MADDPG parameters; (v)
the computation graph construction and task execution on edge

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on March 31,2025 at 02:28:20 UTC from IEEE Xplore. Restrictions apply.

278 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 2, FEBRUARY 2025

—Nano TX2 —NX —Server ‘

025 i
5.0 MMMM.
i
gras
210 ;,'ﬁw
<5 |

0
0 2000 4000 6000 8000 10000
Step

Fig.22. The training of MADDPG for the four devices.
[© cuDNN-Default m SOTA B TOP|

825

e 2

c

S15

©

5 1

805

Q

< o0

Inception V3 + ResNet-50 + SqueezeNet

Fig. 23. In the synchronous multitask scenario, TOP still outperforms the
SOTA.

device to obtain performance feedback. At each step, the search
for endings takes about 6s on average, the computation graph
construction on edge device takes less than 3s, and it executes
tasks for 10s to obtain performance feedback, while the others
take less than 5s in total. As shown in Fig. 22, MADDPG can
converge within 8000 steps, taking about one week in total.

Compared to the offline optimization time, the online exe-
cution cost is usually more concerning. Our TOP framework
can generate near optimal scheduling solution in a very short
time. Since a large number of intra-block optimization results
are stored during the offline phase, the main runtime overhead
arises from inter-block optimization, parsing results, and recon-
structing the computation graph.

Under the above experimental settings, the inference time of
MADDPG on the server is within 0.05ms. Parsing the results and
reconstructing the computation graph on the edge devices can be
completed within 3s. Moreover, only when the variance of the
number of tasks in each queue exceeds threshold 7', the policy is
re-made, and such process is parallel with task execution, so the
computational overhead of online tuning is highly acceptable.

G. Case Study

1) Synchronous Multitask: Multiple models sharing the
same input is a special case for TOP. To simulate the case, we
only set one queue with a sufficient number of tasks, and the
three models share each task in the queue. Correspondingly, we
make the action of TOP task launcher one-dimensional and set
the queue variance to 0. Due to the lack of task launcher in other
methods, for fairness, we set the same task frequency as TOP.

As shown in Fig. 23, our method can also outperform the
SOTA method POS in the case of shared input. TOP not only
considers the parallelism between different models, but also
considers the situation of parallel task pipeline for the same
model. It means that parallelism optimization can be carried out
between instances of the same model, which introduces a larger
optimization space.

O Inception V3 ‘D ResNet-50)‘ O SqueezeNet

& Inception V3 (TOP o, [@ResNet-50 (TOP B SqueezeNet (TOP)
8 5 =5 25
® © ©
x4 x4 x4
83 83 83
=P T2 S
) [} 2
o1 o1 o1
8 3 3
< <0 < 12 3

1 2 1 2 3
Concurrent Num3ber Concurrent Number Concurrent Number
Fig. 24. On the server, we verify the feasibility of improving the throughput

for a single model by increasing its concurrency, and TOP can increase this
benefit.

a~Avg. #Stages
--Avg. #Groups in each stage

6
o 50
230
% 20
10

1 4 8 16 32 64 128
Batch Size

oN

ONBROO= =

#Groups
in each stage

Fig. 25. The graph results for different batch sizes.

2) Self-Acceleration: We conduct an experiment by increas-
ing the concurrent number of a single model, and then allowing
the concurrent models to jointly process tasks (with a sufficient
number of tasks in the queue, randomly assigned to each concur-
rent component for inference, and the task frequency is set to the
dequeue frequency after TOP converges under the corresponding
concurrent number).

As shown in Fig. 24, we first test the overall throughput
of the three models under different concurrent numbers. The
results show that increasing the concurrent number of a single
model can improve the overall throughput, even under the de-
fault scheduling algorithm of NVIDIA cuDNN [35]. Therefore,
under our TOP framework, we retest the overall throughput of
the three models under different concurrent numbers, and find
that TOP can significantly increase the throughput benefit, as
model concurrency can introduce more blocks to improve the
optimization space of TOP.

3) Batch Inference: Batch inference, which stacks a batch
of inputs into a tensor and computes them concurrently, can
more efficiently utilize resources [10], [11]. TOP can also take
advantage of batch inference to further improve throughput.

To verify this, we test the performance of TOP with different
batch sizes in the multi-model scenario. Specifically, we assume
that there are sufficient tasks in each queue. During each queue
dequeuing tasks according to the frequency, we package the task
data into batches and input them into the corresponding model,
i.e., one batch as an inference instance. We only test on the
server because large-batch inference requires high parallelism
and is suitable for resource-rich devices. Real-time applications
on edge devices usually use a batch size of 1.

As shown in Fig. 25, we observe that the larger the batch size,
the more “slender” the optimized computation graph, which is
due to the increased computation load of each operator caused by
the large batch size, occupying more computational resources,
and reducing the number of parallelizable operators in each
stage. In addition, when executing multiple operators in parallel,

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on March 31,2025 at 02:28:20 UTC from IEEE Xplore. Restrictions apply.

LIN et al.: TOP: TASK-BASED OPERATOR PARALLELISM FOR ASYNCHRONOUS DEEP LEARNING INFERENCE ON GPU 279

-Accelerat|on Ratio

o lAvg GPU Utilization g
§ 3 100 S
25 S

§ 2 g

§1 ? 90 g

205 8 >

20 80 O

16 32 64 128
Batch Size

Fig. 26. The performance under different batch sizes.
-+Tensorflow+PyTorch TensorRT ~Tensorflow+PyTorch TensorRT
=TVM +l0S ~TOP =TVM +|0S ~TOP
L5 S 5
© ©
x4 x4
g3 s3
B2 ,% - ' 2 g .
21 o1
30 g0
< 1 4 8 16 32 64 128256 < 1 4 8 16 32 64 128256

Batch Size Batch Size

(a) Inception V3 (b) ResNet-50

-~Tensorflow--PyTorch TensorRT
- TVM «l0S ~TOP [~cuDNN-Default +POS ~=TOP |
g7 £7
g g6
=5 = 5
£
BlEe—— | I3
o 1 o 1
30 80
< 1 4 8 16 32 64 128256 < 1 4 8 16 32 64 128
Batch Size Batch Size
(c) SqueezeNet (d) Inception V3 + ResNet-50 +
SqueezeNet

Fig. 27. Comparison of throughput for the baselines under different batch
sizes in single-model (a)—(c) and multi-model (d) scenarios.

accessing shared resources (such as cache) is prone to conflicts.
For large batches, the conflict becomes more severe because the
demand for shared resources increases. In such a case, the con-
current execution of too many operators may actually degrade
performance. As shown in Fig. 26, as the batch size increases, we
observe that the average throughput significantly increases and
saturates at size 64, and the average GPU utilization stabilizes
at around 90%.

Since the majority of existing frameworks support batch
processing, we also compare the performance of TOP and the
baselines under different batch sizes. As shown in Fig. 27, the
throughput of TOP consistently outperforms all the baselines.
Compared to the multi-model scenario, the single-model sce-
nario has fewer parallelizable operators, so it exhibits a larger
batch size when the throughput saturates, reaching 128.

In summary, TOP can generate optimal scheduling for differ-
ent batch sizes, leveraging the advantages of batch processing to
achieve higher performance under the same resource overhead.

VII. DISCUSSION

Optimality of solution: This paper can be understood as
performing pipelined scheduling for various DL inference tasks
at the operator-level. Due to the prohibitively high scheduling
overhead at the fine-grained level, this paper proposes time-
efficient algorithms and mechanisms through multi-level col-
laboration to reduce the overhead. However, such time-efficient

learning-based algorithms can only find an approximately op-
timal solution, representing a trade-off. Such multi-granularity
collaborative optimization approach is widely used in system
design [12].

Applicability of GPG: We do not directly apply the proposed
GPG-based efficient stage partitioning algorithm to all operators
of the entire model set, as combining all operators results in a
large state and action space, leading to significant errors in state
encoding and decision-making. After testing, it performs well
in the scheduling space of the combined block, highlighting the
necessity of multi-level collaborative optimization.

Limitations of TOP: TOP is primarily optimized for Con-
volutional Neural Network (CNN) models. In reality, the
Transformer-based [36] large models require greater consid-
eration for the diversity of inference progress. The idea of
task-based inter-block scheduling in this paper can be applied to
optimization between Transformer blocks, but the introduction
of dynamic tensor shapes [37] makes the computational load
of each operator highly uncertain, so more advanced intra-block
scheduling methods need to be studied. In the future, parallelism
optimization between Transformers and CNNs can also be con-
sidered. Additionally, the high concurrency of GPUs provides
significant support for this work, TOP may be extended to other
heterogeneous hardware.

Uncertain workload: This paper evaluates TOP under peri-
odic inference tasks to simulate real-time applications of sensors
that sample at a fixed frequency. In addition to the periodic
DNN inference, TOP can also be compatible with uncertain
dynamic workloads, such as voice control triggered by keyword
spotting [38] and so on. The task launcher of TOP can convert the
uncertain workloads (or sampling frequencies) into optimized
task patterns.

Integration with existing technologies: TOP can be easily
integrated with other inter-operator parallelism strategies, such
as operator fusion, to reduce memory access overhead [10],
[11], [13]. It is also orthogonal to intra-operator (thread-level)
parallelism, such as TVM-AutoTune [13] and Miriam [39].
Since TOP only performs operator-level runtime scheduling on
a single machine without modifying the model structure, it can
be integrated and collaboratively optimized with model com-
pression [40], computation offloading [41], progressive infer-
ence [42], and other technologies in edge-cloud computing [43]
to achieve better performance in multi-task inference scenarios.
We look forward to TOP being applied in various edge-cloud
architectures.

VIII. CONCLUSION

For deep learning tasks that arrive asynchronously in the
inference system, this paper proposes Task-based Operator Par-
allelism (TOP), which utilizes MADDPG algorithm to collabo-
ratively optimize task launcher and model scheduler. According
to the task situation in the queue, TOP can dynamically generate
an optimal pair of dequeue frequency and operator parallelism
scheme to enhance resource utilization, increase throughput,
and avoid task backlog. In order to reduce the intra-block
optimization time of TOP, we propose a GPG-based stage

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on March 31,2025 at 02:28:20 UTC from IEEE Xplore. Restrictions apply.

280

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 36, NO. 2, FEBRUARY 2025

partitioning method. TOP outperforms the state-of-the-art in
both single- and multi-model scenarios, and can also handle the
case where multiple models share the same input. Benefiting
from TOP, we can significantly improve the throughput of a
single model by increasing its concurrency or batch size to
achieve self-acceleration.

(1]
(2]

(3]
[4]
[3]

(6]

(71
(8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

REFERENCES

NVIDIA, “Cuda programming guide,” 2020. [Online]. Available: https:
//docs.nvidia.com/cuda/cuda-c-programming- guide/index.html
NVIDIA, “Cuda multi-streams,” 2015. [Online]. Available: https:
//developer.nvidia.com/blog/gpu-pro-tip-cuda-7-streams-simplify-
concurrency/

NVIDIA, “Multi-process service,” 2020. [Online]. Available: https://docs.
nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
NVIDIA, “Multi-instance GPU,” 2020. [Online]. Available: https://docs.
nvidia.com/datacenter/tesla/mig-user-guide/

S. Choi, S. Lee, Y. Kim, J. Park, Y. Kwon, and J. Huh, “Multi-model
machine learning inference serving with GPU spatial partitioning,” 2021,
arXiv:2109.01611.

C.Lin, Z. Zhang, H. Li, and J. Liu, “ECSRL: A learning-based scheduling
framework for ai workloads in heterogeneous edge-cloud systems,” in
Proc. 19th ACM Conf. Embedded Netw. Sensor Syst., 2021, pp. 386-387.
J. Soifer et al., “Deep learning inference service at Microsoft,” in Proc.
2019 USENIX Conf. Oper. Mach. Learn., 2019, pp. 15-17.

N. Ling, X. Huang, Z. Zhao, N. Guan, Z. Yan, and G. Xing, “BlastNet:
Exploiting duo-blocks for cross-processor real-time DNN inference,” in
Proc. 20th ACM Conf. Embedded Netw. Sensor Syst., 2022, pp. 91-105.
Z. Jia, O. Padon, J. Thomas, T. Warszawski, M. Zaharia, and A. Aiken,
“TASO: Optimizing deep learning computation with automatic generation
of graph substitutions,” in Proc. 27th ACM Symp. Operating Syst. Princ.,
2019, pp. 47-62.

Y. Ding, L. Zhu, Z. Jia, G. Pekhimenko, and S. Han, “IOS: Inter-operator
scheduler for CNN acceleration,” in Proc. Mach. Learn. Syst., vol. 3,
pp. 167-180, 2021.

Z. Zhang, H. Li, Y. Zhao, C. Lin, and J. Liu, “POS: An operator
scheduling framework for multi-model inference on edge intelligent
computing,” in Proc. 22nd Int. Conf. Inf. Process. Sensor Netw., 2023,
pp. 40-52.

F. Yu, D. Wang, L. Shangguan, M. Zhang, C. Liu, and X. Chen, “A survey
of multi-tenant deep learning inference on GPU,” 2022, arXiv:2203.09040.
T. Chen et al., “TVM: An automated end-to-end optimizing compiler
for deep learning,” in Proc. 13th USENIX Conf. Operating Syst. Des.
Implementation, 2018, pp. 579-594.

H. Vanholder, “Efficient inference with TensorRT,” in Proc. GPU Technol.
Conf., 2016, Art. no. 2.

F. Yu et al., “Automated runtime-aware scheduling for multi-tenant DNN
inference on GPU,” in Proc. 2021 IEEE/ACM Int. Conf. Comput. Aided
Des., 2021, pp. 1-9.

Z. Wang et al., “Stitching weight-shared deep neural networks for efficient
multitask inference on GPU,” in Proc. 19th Annu. IEEE Int. Conf. Sens.
Commun. Netw., 2022, pp. 145-153.

R.Lowe, Y.I. Wu, A. Tamar, J. Harb, O. P. Abbeel, and I. Mordatch, “Multi-
agent actor-critic for mixed cooperative-competitive environments,” in
Proc. Int. Conf. Neural Inf. Process. Syst., 2017, pp. 6379-6390.

M. Abadi et al., “TensorFlow: Large-scale machine learning on hetero-
geneous systems,” in Proc. 12th USENIX Conf. Operating Syst. Des.
Implementation, 2016, pp. 265-283.

A. Paszke et al., “PyTorch: An imperative style, high-performance deep
learning library,” in Proc. Int. Conf. Neural Inf. Process. Syst., 2019,
Art. no. 721.

S. Wang, P. Yang, Y. Zheng, X. Li, and G. Pekhimenko, “Horizontally fused
training array: An effective hardware utilization squeezer for training novel
deep learning models,” 2021, arXiv:2102.02344.

V. Nigade, P. Bauszat, H. Bal, and L. Wang, “Jellyfish: Timely inference
serving for dynamic edge networks,” in Proc. 2022 IEEE Real-Time Syst.
Symp., 2022, pp. 277-290.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770-778.

[23]

[24]

[25]

[26]

[27]

[28]
[29]
[30]

[31]

[32]

[33]

[34]
[35]
[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

NVIDIA, “Geforce RTX3080 family,” 2024. [Online]. Available:
https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-
3080--3080ti/

C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2016, pp. 2818-2826.

F. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K.
Keutzer, “SqueezeNet: AlexNet-level accuracy with 50x fewer parameters
and <0.5MB model size,” 2016, arXiv:1602.07360.

T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience
replay,” 2015, arXiv:1511.05952.

D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller,
“Deterministic policy gradient algorithms,” in Proc. Int. Conf. Mach.
Learn., 2014, pp. 387-395.

Z.Zhang, P. Cui, and W. Zhu, “Deep learning on graphs: A survey,” IEEE
Trans. Knowl. Data Eng., vol. 34, no. 1, pp. 249-270, Jan. 2022.

C. J. C. H. Watkins, “Learning from delayed rewards,” Ph.D. dissertation,
Cambridge Univ., Cambridge, U.K., 1989.

S. Chetlur et al., “cuDNN: Efficient primitives for deep learning,” 2014,
arXiv:1410.0759.

NVIDIA, “NVIDIA Jetson Xavier,” 2022. [Online]. Available:
https://www.nvidia.com/en-us/autonomous-machines/embedded-
systems/jetson-xavier-series/

NVIDIA, “NVIDIA A100,” 2024. [Online]. Available: https://www.
nvidia.com/en-us/data-center/al00/

NVIDIA, “NVIDIA Jetson nano,” 2022. [Online]. Available:
https://www.nvidia.com/en-us/autonomous-machines/embedded-
systems/jetson-nano/product-development/

NVIDIA, “NVIDIA Jetson TX2,” 2022. [Online]. Available: https://www.
nvidia.com/en-us/autonomous-machines/embedded- systems/jetson-tx2/
NVIDIA, “NVIDIA cuDNN documentation,” 2020. [Online]. Available:
https://docs.nvidia.com/deeplearning/cudnn/developerguide/index.html
A. Vaswani et al., “Attention is all you need,” in Proc. Int. Conf. Neural
Inf. Process. Syst., 2017, pp. 5998-6008.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of
deep bidirectional transformers for language understanding,” 2018, arXiv:
1810.04805.

G. Chen, C. Parada, and G. Heigold, “Small-footprint keyword spotting
using deep neural networks,” in Proc. 2014 IEEE Int. Conf. Acoust. Speech
Signal Process., 2014, pp. 4087-4091.

Z. Zhao, N. Ling, N. Guan, and G. Xing, “Miriam: Exploiting elas-
tic kernels for real-time multi-DNN inference on edge GPU,” 2023,
arXiv:2307.04339.

Z.Liu,J.Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, “Learning efficient
convolutional networks through network slimming,” in Proc. IEEE Int.
Conf. Comput. Vis., 2017, pp. 2736-2744.

Q. Liang, P. Shenoy, and D. Irwin, “Al on the edge: Rethinking Al-
based IoT applications using specialized edge architectures,” 2020, arXiv:
2003.12488.

S. Laskaridis, S. I. Venieris, M. Almeida, I. Leontiadis, and N. D. Lane,
“SPINN: Synergistic progressive inference of neural networks over device
and cloud,” in Proc. 26th Annu. Int. Conf. Mobile Comput. Netw., 2020,
pp. 1-15.

W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision and
challenges,” IEEE Internet Things J., vol. 3,no. 5, pp. 637-646, Oct. 2016.

Changyao Lin (Graduate Student Member, IEEE)
received the BS and MS degrees from the School of
Computer Science and Technology, Harbin Institute
of Technology (HIT), Harbin, China, in 2020 and
2022, respectively. He is currently working toward
the PhD degree with HIT. His research interests in-
clude edge computing, distributed system, and deep
learning.

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on March 31,2025 at 02:28:20 UTC from IEEE Xplore. Restrictions apply.

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://developer.nvidia.com/blog/gpu-pro-tip-cuda-7-streams-simplify-concurrency/
https://developer.nvidia.com/blog/gpu-pro-tip-cuda-7-streams-simplify-concurrency/
https://developer.nvidia.com/blog/gpu-pro-tip-cuda-7-streams-simplify-concurrency/
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/
https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3080--3080ti/
https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/rtx-3080--3080ti/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-series/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-xavier-series/
https://www.nvidia.com/en-us/data-center/a100/
https://www.nvidia.com/en-us/data-center/a100/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-nano/product-development/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-nano/product-development/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-tx2/
https://docs.nvidia.com/deeplearning/cudnn/developerguide/index.html

Zhenming Chen is the chief engineer of China Con-
struction Steel Structure Company, Ltd., director of
China Construction Intelligent Construction Engi-
neering Research Center, and vice director of the
Expert Committee of China Steel Structure Asso-
ciation. He mainly engages in research on intelli-
gent manufacturing of steel structures, complex steel
structure construction etc. In the field of intelligent
manufacturing of steel structures, he has won the first
prize of Guangdong Province Technology Invention
Award.

Ziyang Zhang (Graduate Student Member, IEEE)
received the MS degree from the School of Elec-
tronic Information and Optical Engineering, Nankai
University, Tianjin, China, in 2020. He is currently
working toward the PhD degree with the School of
Computer Science and Technology, Harbin Institute
of Technology (HIT), Harbin, China. His research
interests include edge computing, machine learning
system, and deep learning.

<

LIN et al.: TOP: TASK-BASED OPERATOR PARALLELISM FOR ASYNCHRONOUS DEEP LEARNING INFERENCE ON GPU 281

Jie Liu (Fellow, IEEE) received the B.S. and M.S.
degrees in automation from Tsinghua University, Bei-
jing, China, in 1993 and 1996, respectively, and the
Ph.D. degree in electrical engineering and computer
sciences from University of California at Berkeley,
Berkeley, CA, USA,in2001. He is currently the Chair
Professor with Harbin Institute of Technology (HIT),
Harbin, China, and the Dean of its AI Research Insti-
tute. He is the Director of the National Key Laboratory
of Smart Farm Technologies and Systems. Before
joining HIT, he spent 18 years with Xerox PARC,

Palo Alto, CA, USA, Microsoft Research, Redmond, WA, USA, and Microsoft
Product Teams. He led the Sensing and Energy Research Group as a Principal
Research Manager with MSR, Redmond. In MSR-NexT and Product Groups,
he incubated smart retail solutions, which became part of Microsoft Business
AT offering. His research interests include Al for IoT systems, sensing, mobile
computing, and energy-efficient systems. He has chaired a number of top-tier
conferences in sensing and pervasive computing, and was an Associate Editor
for several top-tier journals. He has received 6 Best Paper Awards, the Leon O.
Chua Award from UC Berkeley in 2001, and the IEEE TCCPS Distinguished
Leadership Award in 2021. He is an IEEE Fellow and ACM Distinguished

Scientist.

Authorized licensed use limited to: University Town Library of Shenzhen. Downloaded on March 31,2025 at 02:28:20 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

